Monitoring of Land-Surface Deformation in the Karamay Oilfield, Xinjiang, China, Using SAR Interferometry

Synthetic Aperture Radar (SAR) interferometry is a technique that provides high-resolution measurements of the ground displacement associated with various geophysical processes. To investigate the land-surface deformation in Karamay, a typical oil-producing city in the Xinjiang Uyghur Autonomous Reg...

Full description

Saved in:
Bibliographic Details
Published inApplied sciences Vol. 7; no. 8; p. 772
Main Authors Aimaiti, Yusupujiang, Yamazaki, Fumio, Liu, Wen, Kasimu, Alimujiang
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 30.07.2017
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Synthetic Aperture Radar (SAR) interferometry is a technique that provides high-resolution measurements of the ground displacement associated with various geophysical processes. To investigate the land-surface deformation in Karamay, a typical oil-producing city in the Xinjiang Uyghur Autonomous Region, China, Advanced Land Observing Satellite (ALOS) Phased Array L-band Synthetic Aperture Radar (PALSAR) data were acquired for the period from 2007 to 2009, and a two-pass differential SAR interferometry (D-InSAR) process was applied. The experimental results showed that two sites in the north-eastern part of the city exhibit a clear indication of land deformation. For a further evaluation of the D-InSAR result, the Persistent Scatterer (PS) and Small Baseline Subset (SBAS)-InSAR techniques were applied for 21 time series Environmental Satellite (ENVISAT) C-band Advanced Synthetic Aperture Radar (ASAR) data from 2003 to 2010. The comparison between the D-InSAR and SBAS-InSAR measurements had better agreement than that from the PS-InSAR measurement. The maximum deformation rate attributed to subsurface water injection for the period from 2003 to 2010 was up to approximately 33 mm/year in the line of sight (LOS) direction. The interferometric phase change from November 2007 to June 2010 showed a clear deformation pattern, and the rebound center has been expanding in scale and increasing in quantity.
ISSN:2076-3417
2076-3417
DOI:10.3390/app7080772