Highly efficient soluble expression and purification of recombinant human basic fibroblast growth factor (hbFGF) by fusion with a new collagen-like protein (Scl2) in Escherichia coli

Human basic fibroblast growth factor (hbFGF) is involved in a wide range of biological activities that affect the growth, differentiation, and migration. Due to its wound healing effects and therapy, hbFGF has the potential as therapeutic agent. Therefore, large-scale production of biologically acti...

Full description

Saved in:
Bibliographic Details
Published inPreparative biochemistry & biotechnology Vol. 50; no. 6; pp. 598 - 606
Main Authors Rahman, Inamur, Fang, Lina, Wei, Zhang, Zheng, Xiaodong, Jiazhang, Lian, Huang, Lei, Xu, Zhinan
Format Journal Article
LanguageEnglish
Published England Taylor & Francis 02.07.2020
Taylor & Francis Ltd
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Human basic fibroblast growth factor (hbFGF) is involved in a wide range of biological activities that affect the growth, differentiation, and migration. Due to its wound healing effects and therapy, hbFGF has the potential as therapeutic agent. Therefore, large-scale production of biologically active recombinant hbFGF with low cost is highly desirable. However, the complex structure of hbFGF hinders its high-level expression as the soluble and functional form. In the present study, an efficient, cost-effective, and scalable method for producing recombinant hbFGF was developed. The modified collagen-like protein (Scl2-M) from Streptococcus pyogenes was used as the fusion tag for producing recombinant hbFGF for the first time. After optimization, the expression level of Scl2-M-hbFGF reached approximately 0.85 g/L in the shake flask and 7.7 g/L in a high cell-density fermenter using glycerol as a carbon source. Then, the recombinant Scl2-M-hbFGF was readily purified using one-step acid precipitation and the purified Scl2-M-hbFGF was digested with enterokinase. The digested mixture was further subject to ion-exchange chromatography, and the final high-purity (96%) hbFGF product was prepared by freeze-drying. The recovery rate of the whole purification process attained 55.0%. In addition, the biological activity of recombinant hbFGF was confirmed by using L929 and BALB/c3T3 fibroblasts. Overall, this method has the potential for large scale production of recombinant hbFGF.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:1082-6068
1532-2297
1532-2297
DOI:10.1080/10826068.2020.1721533