Cell growth selection system to detect extracellular and transmembrane protein interactions

The interplay among extracellular and cell surface proteins, such as the interactions between ligands and receptors or between antigens and antibodies, is involved in a multitude of physiological and pathological phenomena. In the oxidizing milieu of the secretory pathway in eukaryotic cells, many e...

Full description

Saved in:
Bibliographic Details
Published inBiochimica et biophysica acta Vol. 1622; no. 2; pp. 117 - 127
Main Authors Urech, David M., Lichtlen, Peter, Barberis, Alcide
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier B.V 23.07.2003
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The interplay among extracellular and cell surface proteins, such as the interactions between ligands and receptors or between antigens and antibodies, is involved in a multitude of physiological and pathological phenomena. In the oxidizing milieu of the secretory pathway in eukaryotic cells, many extracellular proteins build disulfide bonds that significantly contribute to their correct folding and structural stability. Thus, conventional yeast two-hybrid interaction assays, which occur in the reducing intracellular environment, might not be adequate to detect extracellular protein–protein interactions. We have exploited the properties of yeast Ire1p, a type I endoplasmic reticulum (ER) membrane protein involved in the unfolded protein response (UPR) as a dimerization-activated receptor, to develop a novel system for the detection and study of interactions between extracellular and/or membrane proteins. In our system, named SCINEX-P ( screening for interactions between extracellular proteins), proteins of interest were fused to truncated Ire1p so as to substitute its N-terminal lumenal domain (NLD). Specific interaction between two partners caused dimerization of the Ire1p moiety, which, through the endogenous UPR signalling pathway, led to activation of transcription of genes that permit cell growth under selective conditions.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0304-4165
0006-3002
1872-8006
DOI:10.1016/S0304-4165(03)00133-8