Energy Management Strategy Based on Multiple Operating States for a Photovoltaic/Fuel Cell/Energy Storage DC Microgrid

It is a great challenge for DC microgrids with stochastic renewable sources and volatility loads to achieve better operation performance. This study proposes an energy management strategy based on multiple operating states for a DC microgrid, which is comprised of a photovoltaic (PV) array, a proton...

Full description

Saved in:
Bibliographic Details
Published inEnergies (Basel) Vol. 10; no. 1; p. 136
Main Authors Han, Ying, Chen, Weirong, Li, Qi
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.01.2017
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:It is a great challenge for DC microgrids with stochastic renewable sources and volatility loads to achieve better operation performance. This study proposes an energy management strategy based on multiple operating states for a DC microgrid, which is comprised of a photovoltaic (PV) array, a proton exchange membrane fuel cell (PEMFC) system, and a battery bank. This proposed strategy can share the power properly and keep the bus voltage steady under different operating states (the state of charge (SOC) of the battery bank, loading conditions, and PV array output power). In addition, a microgrids test platform is established. In order to verify the effectiveness of the proposed energy management strategy, the strategy is implemented in a hardware system and experimentally tested under different operating states. The experimental results illustrate the good performance of the proposed control strategy for the DC microgrid under different scenarios of power generation and load demand.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1996-1073
1996-1073
DOI:10.3390/en10010136