DLPFC transcriptome defines two molecular subtypes of schizophrenia

Little is known about the molecular pathogenesis of schizophrenia, possibly because of unrecognized heterogeneity in diagnosed patient populations. We analyzed gene expression data collected from the dorsolateral prefrontal cortex (DLPFC) of post-mortem frozen brains of 189 adult diagnosed schizophr...

Full description

Saved in:
Bibliographic Details
Published inTranslational psychiatry Vol. 9; no. 1; p. 147
Main Authors Bowen, Elijah F W, Burgess, Jack L, Granger, Richard, Kleinman, Joel E, Rhodes, C Harker
Format Journal Article
LanguageEnglish
Published United States Nature Publishing Group 09.05.2019
Nature Publishing Group UK
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Little is known about the molecular pathogenesis of schizophrenia, possibly because of unrecognized heterogeneity in diagnosed patient populations. We analyzed gene expression data collected from the dorsolateral prefrontal cortex (DLPFC) of post-mortem frozen brains of 189 adult diagnosed schizophrenics and 206 matched controls. Transcripts from 633 genes are differentially expressed in the DLPFC of schizophrenics as compared to controls at Bonferroni-corrected significance levels. Seventeen of those genes are differentially expressed at very high significance levels (<10 after Bonferroni correction). The findings were closely replicated in a dataset from an entirely unrelated source. The statistical significance of this differential gene expression is being driven by about half of the schizophrenic DLPFC samples, and importantly, it is the same half of the samples that is driving the significance for almost all of the differentially expressed transcripts. Weighted gene co-expression network analysis (WGCNA) of the schizophrenic subjects, based on the transcripts differentially expressed in the schizophrenics as compared to controls, divides them into two groups. "Type 1" schizophrenics have a DLPFC transcriptome similar to that of controls with only four differentially expressed genes identified. "Type 2" schizophrenics have a DLPFC transcriptome dramatically different from that of controls, with 3529 expression array probes to 3092 genes detecting transcripts that are differentially expressed at very high significance levels. These findings were re-tested and replicated in a separate independent cohort, using the RNAseq data from the DLPFC of an independent set of schizophrenics and control subjects. We suggest the hypothesis that these striking differences in DLPFC transcriptomes, identified and replicated in two populations, imply a fundamental biologic difference between these two groups of diagnosed schizophrenics, and we propose specific paths for further testing and expanding the hypothesis.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2158-3188
2158-3188
DOI:10.1038/s41398-019-0472-z