Combined Method Comprising Low Burden Physiological Measurements with Dry Electrodes and Machine Learning for Classification of Visually Induced Motion Sickness in Remote-Controlled Excavator

The construction industry is actively developing remote-controlled excavators to address labor shortages and improve work safety. However, visually induced motion sickness (VIMS) remains a concern in the remote operation of construction machinery. To predict the occurrence and severity of VIMS, we d...

Full description

Saved in:
Bibliographic Details
Published inSensors (Basel, Switzerland) Vol. 24; no. 19; p. 6465
Main Authors Yoshioka, Naohito, Takeuchi, Hiroki, Shu, Yuzhuo, Okamatsu, Taro, Araki, Nobuyuki, Kamakura, Yoshiyuki, Ohsuga, Mieko
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 07.10.2024
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The construction industry is actively developing remote-controlled excavators to address labor shortages and improve work safety. However, visually induced motion sickness (VIMS) remains a concern in the remote operation of construction machinery. To predict the occurrence and severity of VIMS, we developed a prototype system that acquires multiple physiological signals with different mechanisms under a low burden and detects VIMS from the collected data. Signals during VIMS were recorded from nine healthy adult males operating excavator simulators equipped with multiple displays and a head-mounted display. Light gradient-boosting machine-based VIMS detection binary classification models were constructed using approximately 30,000 s of time-series data, comprising 23 features derived from the physiological signals. These models were validated using leave-one-out cross-validation on seven participants who experienced severe VIMS and evaluated through area under the curve (AUC) scores. The mean receiver operating characteristic curve AUC score was 0.84, and the mean precision-recall curve AUC score was 0.71. All features were incorporated into the models, with saccade frequency and skin conductance response identified as particularly important. These trends aligned with subjective assessments of VIMS severity. This study contributes to advancing the use of remote-controlled machinery by addressing a critical challenge to operator performance and safety.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1424-8220
1424-8220
DOI:10.3390/s24196465