Distributed Continuous-Time Optimization: Nonuniform Gradient Gains, Finite-Time Convergence, and Convex Constraint Set
In this paper, a distributed optimization problem with general differentiable convex objective functions is studied for continuous-time multi-agent systems with single-integrator dynamics. The objective is for multiple agents to cooperatively optimize a team objective function formed by a sum of loc...
Saved in:
Published in | IEEE transactions on automatic control Vol. 62; no. 5; pp. 2239 - 2253 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.05.2017
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
ISSN | 0018-9286 1558-2523 |
DOI | 10.1109/TAC.2016.2604324 |
Cover
Abstract | In this paper, a distributed optimization problem with general differentiable convex objective functions is studied for continuous-time multi-agent systems with single-integrator dynamics. The objective is for multiple agents to cooperatively optimize a team objective function formed by a sum of local objective functions with only local interaction and information while explicitly taking into account nonuniform gradient gains, finite-time convergence, and a common convex constraint set. First, a distributed nonsmooth algorithm is introduced for a special class of convex objective functions that have a quadratic-like form. It is shown that all agents reach a consensus in finite time while minimizing the team objective function asymptotically. Second, a distributed algorithm is presented for general differentiable convex objective functions, in which the interaction gains of each agent can be self-adjusted based on local states. A corresponding condition is then given to guarantee that all agents reach a consensus in finite time while minimizing the team objective function asymptotically. Third, a distributed optimization algorithm with state-dependent gradient gains is given for general differentiable convex objective functions. It is shown that the distributed continuous-time optimization problem can be solved even though the gradient gains are not identical. Fourth, a distributed tracking algorithm combined with a distributed estimation algorithm is given for general differentiable convex objective functions. It is shown that all agents reach a consensus while minimizing the team objective function in finite time. Fifth, as an extension of the previous results, a distributed constrained optimization algorithm with nonuniform gradient gains and a distributed constrained finite-time optimization algorithm are given. It is shown that both algorithms can be used to solve a distributed continuous-time optimization problem with a common convex constraint set. Numerical examples are included to illustrate the obtained theoretical results. |
---|---|
AbstractList | In this paper, a distributed optimization problem with general differentiable convex objective functions is studied for continuous-time multi-agent systems with single-integrator dynamics. The objective is for multiple agents to cooperatively optimize a team objective function formed by a sum of local objective functions with only local interaction and information while explicitly taking into account nonuniform gradient gains, finite-time convergence, and a common convex constraint set. First, a distributed nonsmooth algorithm is introduced for a special class of convex objective functions that have a quadratic-like form. It is shown that all agents reach a consensus in finite time while minimizing the team objective function asymptotically. Second, a distributed algorithm is presented for general differentiable convex objective functions, in which the interaction gains of each agent can be self-adjusted based on local states. A corresponding condition is then given to guarantee that all agents reach a consensus in finite time while minimizing the team objective function asymptotically. Third, a distributed optimization algorithm with state-dependent gradient gains is given for general differentiable convex objective functions. It is shown that the distributed continuous-time optimization problem can be solved even though the gradient gains are not identical. Fourth, a distributed tracking algorithm combined with a distributed estimation algorithm is given for general differentiable convex objective functions. It is shown that all agents reach a consensus while minimizing the team objective function in finite time. Fifth, as an extension of the previous results, a distributed constrained optimization algorithm with nonuniform gradient gains and a distributed constrained finite-time optimization algorithm are given. It is shown that both algorithms can be used to solve a distributed continuous-time optimization problem with a common convex constraint set. Numerical examples are included to illustrate the obtained theoretical results. |
Author | Peng Lin Wei Ren Farrell, Jay A. |
Author_xml | – sequence: 1 surname: Peng Lin fullname: Peng Lin email: lin_peng0103@sohu.com organization: Sch. of Inf. Sci. & Eng., Central South Univ., Changsha, China – sequence: 2 surname: Wei Ren fullname: Wei Ren email: ren@ee.ucr.edu organization: Dept. of Electr. & Comput. Eng., Univ. of California, Riverside, Riverside, CA, USA – sequence: 3 givenname: Jay A. surname: Farrell fullname: Farrell, Jay A. email: jay.farrell@ucr.edu organization: Dept. of Electr. & Comput. Eng., Univ. of California, Riverside, Riverside, CA, USA |
BookMark | eNp9kDtPwzAURi1UJNrCjsQSibUptuNHylYVWpAQHShzlMQ3yFVjF9vh9etJSMXAwHRl6zv30z0jNDDWAELnBE8JwbOrzXwxpZiIKRWYJZQdoSHhPI0pp8kADTEmaTyjqThBI--37VMwRobo_Ub74HTRBFDRwpqgTWMbH290DdF6H3Stv_KgrbmOHq1pjK6sq6OVy5UGE6JVro2fREttdIAeape8gXsBU8Ikyo3qPz660Ta1-RA9QThFx1W-83B2mGP0vLzdLO7ih_XqfjF_iEtGZYilSqWQlQBOBSUVV0QKShNWEiW5KmhecQCRcJVLWc1SYEkhJGGgeFGSqiiTMbrs9-6dfW3Ah2xrG2fayoyks0RiwZloU7hPlc5676DK9k7XufvMCM46vVmrN-v0Zge9LSL-IKUOP6a6I3f_gRc9qAHgt0dyLhjGyTeCWIqF |
CODEN | IETAA9 |
CitedBy_id | crossref_primary_10_1016_j_neucom_2023_03_027 crossref_primary_10_1109_TCNS_2020_3029996 crossref_primary_10_1109_TCNS_2019_2915015 crossref_primary_10_1109_TCNS_2024_3469048 crossref_primary_10_1049_iet_cta_2018_5585 crossref_primary_10_1109_TSMC_2021_3138109 crossref_primary_10_1109_TNSE_2021_3133541 crossref_primary_10_1016_j_isatra_2024_03_024 crossref_primary_10_1109_TCSII_2019_2900758 crossref_primary_10_1109_TAC_2021_3079192 crossref_primary_10_1109_TCYB_2020_2988490 crossref_primary_10_1049_iet_cta_2018_6307 crossref_primary_10_1109_ACCESS_2021_3055583 crossref_primary_10_1109_TII_2023_3262340 crossref_primary_10_1007_s00521_023_08794_5 crossref_primary_10_1155_2017_5679073 crossref_primary_10_1080_00207721_2024_2366415 crossref_primary_10_1002_rnc_5927 crossref_primary_10_1016_j_automatica_2018_05_032 crossref_primary_10_1016_j_arcontrol_2019_05_006 crossref_primary_10_1016_j_automatica_2020_109459 crossref_primary_10_1016_j_neucom_2019_01_101 crossref_primary_10_1109_TCST_2021_3058845 crossref_primary_10_1109_TASE_2024_3452472 crossref_primary_10_3934_mbe_2023916 crossref_primary_10_1002_rnc_3871 crossref_primary_10_1016_j_isatra_2019_07_019 crossref_primary_10_1016_j_jfranklin_2019_12_035 crossref_primary_10_1109_TCYB_2022_3219295 crossref_primary_10_1109_TCYB_2018_2794506 crossref_primary_10_1016_j_oceaneng_2019_106341 crossref_primary_10_1016_j_neucom_2018_01_082 crossref_primary_10_1049_iet_cta_2018_5120 crossref_primary_10_1109_TCNS_2018_2808599 crossref_primary_10_1088_1674_1056_abfb5b crossref_primary_10_1016_j_automatica_2022_110358 crossref_primary_10_1016_j_automatica_2025_112213 crossref_primary_10_1177_00202940211029332 crossref_primary_10_1007_s11424_024_2149_9 crossref_primary_10_1109_TAC_2023_3244122 crossref_primary_10_3390_math12213347 crossref_primary_10_1109_LCSYS_2020_3037038 crossref_primary_10_1002_acs_3784 crossref_primary_10_1109_TSMC_2024_3354729 crossref_primary_10_1109_TCYB_2018_2819361 crossref_primary_10_1109_TCYB_2022_3179519 crossref_primary_10_1007_s11424_023_1250_9 crossref_primary_10_1007_s12555_023_0451_2 crossref_primary_10_1080_00207721_2021_2019348 crossref_primary_10_1002_rnc_4076 crossref_primary_10_1007_s11071_020_06116_1 crossref_primary_10_1109_ACCESS_2019_2925414 crossref_primary_10_1109_ACCESS_2019_2918320 crossref_primary_10_1109_TCNS_2020_3027787 crossref_primary_10_1007_s40747_020_00265_x crossref_primary_10_1109_TCNS_2024_3510602 crossref_primary_10_1109_TNSE_2023_3342165 crossref_primary_10_1007_s00521_021_06026_2 crossref_primary_10_1109_TAC_2024_3453117 crossref_primary_10_1109_TAC_2023_3266018 crossref_primary_10_1007_s11071_024_09952_7 crossref_primary_10_1016_j_automatica_2019_02_009 crossref_primary_10_1016_j_automatica_2023_111346 crossref_primary_10_1016_j_physd_2021_132844 crossref_primary_10_1109_JSYST_2022_3227024 crossref_primary_10_1109_TSMC_2021_3064152 crossref_primary_10_3390_math10244689 crossref_primary_10_1080_00207721_2022_2158446 crossref_primary_10_1016_j_isatra_2017_06_013 crossref_primary_10_1016_j_isatra_2024_10_016 crossref_primary_10_1109_TIE_2018_2880709 crossref_primary_10_1109_TSIPN_2023_3338467 crossref_primary_10_1109_TCYB_2019_2901256 crossref_primary_10_1109_TSG_2023_3241653 crossref_primary_10_1109_TSMC_2020_3005169 crossref_primary_10_1007_s12555_016_0453_4 crossref_primary_10_1109_TNNLS_2019_2955678 crossref_primary_10_1002_asjc_2790 crossref_primary_10_1109_TAC_2022_3209406 crossref_primary_10_1109_TSMC_2024_3351909 crossref_primary_10_1016_j_ins_2023_03_054 crossref_primary_10_1109_TCSII_2020_3041504 crossref_primary_10_1080_00207179_2017_1397289 crossref_primary_10_1016_j_jfranklin_2024_107270 crossref_primary_10_1109_ACCESS_2019_2937448 crossref_primary_10_1177_01423312241248250 crossref_primary_10_1109_TNNLS_2018_2850763 crossref_primary_10_1016_j_sysconle_2024_105872 crossref_primary_10_1109_TAC_2021_3079284 crossref_primary_10_1002_asjc_3526 crossref_primary_10_1016_j_sysconle_2020_104708 crossref_primary_10_1007_s11071_024_10118_8 crossref_primary_10_1016_j_jfranklin_2020_05_043 crossref_primary_10_1080_00207721_2020_1801885 crossref_primary_10_3390_drones9010036 crossref_primary_10_1080_00207721_2018_1502833 crossref_primary_10_1049_iet_cta_2020_0901 crossref_primary_10_1109_ACCESS_2019_2939953 crossref_primary_10_1016_j_automatica_2020_109407 crossref_primary_10_1007_s11431_022_2352_9 crossref_primary_10_1109_TSMC_2019_2931846 crossref_primary_10_1002_rnc_6699 crossref_primary_10_1016_j_neunet_2024_106791 crossref_primary_10_1016_j_ins_2022_05_116 crossref_primary_10_1109_TAC_2021_3133269 crossref_primary_10_1007_s12555_019_0431_8 crossref_primary_10_1109_TCSII_2018_2878250 crossref_primary_10_1016_j_arcontrol_2024_100983 crossref_primary_10_1109_TNSE_2022_3169151 crossref_primary_10_1016_j_arcontrol_2023_04_002 crossref_primary_10_1109_TAC_2021_3071651 crossref_primary_10_1109_TCNS_2021_3068352 crossref_primary_10_1109_TCYB_2019_2895885 crossref_primary_10_1109_TAC_2018_2872195 crossref_primary_10_1007_s11432_018_9853_9 crossref_primary_10_1016_j_neucom_2018_09_024 crossref_primary_10_1109_TAC_2022_3198113 crossref_primary_10_1002_asjc_3573 crossref_primary_10_1016_j_automatica_2020_109060 crossref_primary_10_1016_j_jfranklin_2019_06_024 crossref_primary_10_1109_TITS_2023_3314800 crossref_primary_10_1109_TSMC_2021_3098641 crossref_primary_10_1016_j_jfranklin_2019_02_009 crossref_primary_10_1016_j_ifacol_2023_10_1745 crossref_primary_10_1109_TAC_2021_3075666 crossref_primary_10_1109_TCYB_2018_2839912 crossref_primary_10_1016_j_automatica_2019_108755 crossref_primary_10_1109_TAC_2018_2884998 crossref_primary_10_1109_TCYB_2018_2852333 crossref_primary_10_1016_j_sysconle_2018_04_004 crossref_primary_10_1016_j_sysconle_2025_106019 crossref_primary_10_1109_TAC_2021_3056233 crossref_primary_10_1109_ACCESS_2019_2905874 crossref_primary_10_1109_TAC_2019_2936355 crossref_primary_10_1109_TRO_2021_3057220 crossref_primary_10_1109_TCYB_2020_3022240 crossref_primary_10_1109_ACCESS_2019_2909315 crossref_primary_10_1109_TCYB_2019_2927725 crossref_primary_10_1016_j_ins_2022_10_034 crossref_primary_10_1080_00207179_2018_1514130 crossref_primary_10_1177_0142331219866517 crossref_primary_10_3390_math13030509 crossref_primary_10_1109_TSIPN_2024_3463408 crossref_primary_10_1007_s11071_019_04826_9 crossref_primary_10_1109_TSTE_2021_3119657 crossref_primary_10_1016_j_automatica_2022_110726 crossref_primary_10_1016_j_ifacol_2023_10_1739 crossref_primary_10_1109_TAC_2024_3419185 crossref_primary_10_12677_aam_2024_137306 crossref_primary_10_1109_TAC_2020_2987379 crossref_primary_10_1016_j_isatra_2022_05_007 crossref_primary_10_1002_rnc_6408 crossref_primary_10_1109_TCNS_2019_2939642 crossref_primary_10_1109_JSYST_2024_3417255 crossref_primary_10_1109_TAC_2021_3131678 crossref_primary_10_1016_j_automatica_2020_109289 crossref_primary_10_1109_TSMC_2019_2961421 crossref_primary_10_1016_j_ins_2018_01_040 crossref_primary_10_1016_j_neucom_2021_08_140 crossref_primary_10_1109_TNNLS_2021_3132658 crossref_primary_10_1016_j_ifacol_2020_12_203 crossref_primary_10_1016_j_ins_2019_06_013 crossref_primary_10_1007_s00521_023_09067_x crossref_primary_10_1109_TAC_2020_2979274 crossref_primary_10_1016_j_ins_2022_06_077 crossref_primary_10_1109_TSMC_2023_3274222 crossref_primary_10_1109_TAC_2021_3054072 crossref_primary_10_1109_TCNS_2019_2915626 crossref_primary_10_1016_j_physa_2019_03_063 crossref_primary_10_1016_j_sysconle_2017_02_010 crossref_primary_10_1016_j_jfranklin_2022_09_047 crossref_primary_10_1049_iet_cta_2019_0428 crossref_primary_10_1109_TNSE_2023_3311047 crossref_primary_10_1049_iet_cta_2017_1322 crossref_primary_10_1109_ACCESS_2019_2939643 crossref_primary_10_1109_TSG_2022_3147446 crossref_primary_10_1007_s11424_021_1218_6 crossref_primary_10_1007_s00521_018_3798_1 crossref_primary_10_1007_s11071_024_10628_5 crossref_primary_10_1109_ACCESS_2019_2918960 crossref_primary_10_1177_01423312241232459 crossref_primary_10_1109_TAC_2019_2917023 crossref_primary_10_1109_TCYB_2021_3052775 crossref_primary_10_1155_2017_1626452 crossref_primary_10_1109_TCYB_2018_2869249 crossref_primary_10_1002_rnc_7176 crossref_primary_10_1109_TNSE_2021_3126154 crossref_primary_10_1002_rnc_4768 crossref_primary_10_1109_TAC_2023_3335797 crossref_primary_10_1177_1550147718778501 crossref_primary_10_1109_TCYB_2018_2884762 crossref_primary_10_1109_TSMC_2024_3525007 crossref_primary_10_1109_TAC_2018_2852602 crossref_primary_10_1109_TCYB_2021_3128051 crossref_primary_10_1109_TCYB_2024_3498323 crossref_primary_10_1109_ACCESS_2020_2971729 crossref_primary_10_1109_TNNLS_2023_3337387 crossref_primary_10_1088_1674_1056_28_3_030501 crossref_primary_10_3390_math10122010 crossref_primary_10_1109_LCSYS_2022_3213745 crossref_primary_10_1016_j_jfranklin_2022_01_012 crossref_primary_10_1016_j_jfranklin_2018_03_002 crossref_primary_10_1016_j_neucom_2023_02_024 crossref_primary_10_1109_ACCESS_2019_2962234 crossref_primary_10_1109_TSMC_2020_2997697 crossref_primary_10_1109_ACCESS_2019_2930869 crossref_primary_10_1016_j_automatica_2021_109676 crossref_primary_10_1016_j_ins_2019_08_010 crossref_primary_10_1109_TSMC_2023_3331334 crossref_primary_10_1007_s11424_020_9021_3 crossref_primary_10_1109_ACCESS_2024_3434692 crossref_primary_10_1002_rnc_5053 crossref_primary_10_1002_rnc_6605 crossref_primary_10_1137_22M1515197 crossref_primary_10_1016_j_neunet_2023_11_025 crossref_primary_10_1109_TAC_2021_3095456 crossref_primary_10_1002_rnc_4547 crossref_primary_10_1002_asjc_2025 crossref_primary_10_1177_1550147717726313 crossref_primary_10_1016_j_automatica_2024_111847 crossref_primary_10_1109_TCSII_2020_2987947 crossref_primary_10_1016_j_ifacol_2017_08_240 crossref_primary_10_1016_j_neucom_2023_01_038 crossref_primary_10_1080_00207721_2018_1563222 crossref_primary_10_1016_j_automatica_2022_110390 crossref_primary_10_1109_TCYB_2019_2903852 crossref_primary_10_1016_j_automatica_2023_111087 crossref_primary_10_1002_rnc_6297 crossref_primary_10_1109_TNSE_2023_3301900 crossref_primary_10_1109_TAC_2019_2910946 crossref_primary_10_1109_TCYB_2021_3063619 crossref_primary_10_1080_00207721_2018_1533047 crossref_primary_10_9746_sicetr_55_286 crossref_primary_10_1109_TAC_2023_3318202 crossref_primary_10_1016_j_ins_2021_02_049 crossref_primary_10_1177_1550147717722513 crossref_primary_10_1016_j_sysconle_2024_105930 crossref_primary_10_3934_mbe_2023770 crossref_primary_10_1016_j_automatica_2021_109899 crossref_primary_10_1109_TSMC_2020_2966636 crossref_primary_10_1002_rnc_6842 crossref_primary_10_1109_JAS_2022_105890 crossref_primary_10_1002_rnc_5199 crossref_primary_10_1109_TCSII_2023_3338217 |
Cites_doi | 10.1109/JSTSP.2011.2118740 10.1109/TAC.2014.2364096 10.1109/TAC.2011.2160020 10.1017/CBO9780511804441 10.1109/TAC.2008.2009515 10.1016/j.automatica.2015.11.014 10.1016/j.automatica.2016.01.055 10.1007/978-94-015-7793-9 10.1016/j.automatica.2006.06.015 10.1109/TAC.2010.2041686 10.1109/ACC.2014.6858932 10.1016/j.automatica.2015.03.001 10.1109/TAC.2010.2041610 10.1109/TAC.2012.2228038 10.1109/TAC.2012.2199176 10.1109/TAC.2012.2184199 10.1109/CDC.2012.6425817 10.1109/TAC.2014.2352691 10.1109/TAC.2012.2215261 10.1109/CDC.2010.5718026 10.1109/CDC.2012.6425861 10.1109/CDC.2008.4739339 10.1109/CDC.2011.6161503 10.1109/TAC.2013.2278132 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017 |
DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 7TB 8FD FR3 JQ2 L7M L~C L~D |
DOI | 10.1109/TAC.2016.2604324 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Xplore CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Technology Research Database |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1558-2523 |
EndPage | 2253 |
ExternalDocumentID | 10_1109_TAC_2016_2604324 7556400 |
Genre | orig-research |
GrantInformation_xml | – fundername: National Science Foundation grantid: ECCS-1611423 funderid: 10.13039/100000001 – fundername: National Natural Science Foundation of China grantid: 61203080; 61573082; 61528301; 61120106010 funderid: 10.13039/501100001809 – fundername: State Key Laboratory of Intelligent Control and Decision of Complex Systems of Beijing Institute of Technology |
GroupedDBID | -~X .DC 0R~ 29I 3EH 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK ACNCT AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD F5P HZ~ H~9 IAAWW IBMZZ ICLAB IDIHD IFIPE IFJZH IPLJI JAVBF LAI M43 MS~ O9- OCL P2P RIA RIE RNS TAE TN5 VH1 VJK ~02 AAYOK AAYXX CITATION RIG 7SC 7SP 7TB 8FD FR3 JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c427t-7d8767f6e52621f5d1762234c1d75db2af5ee635da77f98e43b6714ed5bc1fbc3 |
IEDL.DBID | RIE |
ISSN | 0018-9286 |
IngestDate | Mon Jun 30 10:15:51 EDT 2025 Tue Jul 01 03:36:06 EDT 2025 Thu Apr 24 22:58:22 EDT 2025 Wed Aug 27 02:48:37 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c427t-7d8767f6e52621f5d1762234c1d75db2af5ee635da77f98e43b6714ed5bc1fbc3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 1893706546 |
PQPubID | 85475 |
PageCount | 15 |
ParticipantIDs | crossref_citationtrail_10_1109_TAC_2016_2604324 crossref_primary_10_1109_TAC_2016_2604324 ieee_primary_7556400 proquest_journals_1893706546 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-05-01 |
PublicationDateYYYYMMDD | 2017-05-01 |
PublicationDate_xml | – month: 05 year: 2017 text: 2017-05-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | IEEE transactions on automatic control |
PublicationTitleAbbrev | TAC |
PublicationYear | 2017 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref12 ref15 ref14 ref11 ref10 ref2 ref1 ref17 ref16 ref19 ref18 facchinei (ref23) 2003 filippov (ref24) 1988 ref25 ref20 ref22 ref21 ref8 ref7 ref9 ref4 ref3 ref6 ref5 |
References_xml | – ident: ref5 doi: 10.1109/JSTSP.2011.2118740 – ident: ref3 doi: 10.1109/TAC.2014.2364096 – ident: ref8 doi: 10.1109/TAC.2011.2160020 – ident: ref22 doi: 10.1017/CBO9780511804441 – ident: ref2 doi: 10.1109/TAC.2008.2009515 – ident: ref15 doi: 10.1016/j.automatica.2015.11.014 – ident: ref16 doi: 10.1016/j.automatica.2016.01.055 – year: 1988 ident: ref24 publication-title: Differential Equations with Discontinuous Righthand Sides doi: 10.1007/978-94-015-7793-9 – ident: ref25 doi: 10.1016/j.automatica.2006.06.015 – ident: ref1 doi: 10.1109/TAC.2010.2041686 – ident: ref20 doi: 10.1109/ACC.2014.6858932 – ident: ref14 doi: 10.1016/j.automatica.2015.03.001 – ident: ref17 doi: 10.1109/TAC.2010.2041610 – ident: ref6 doi: 10.1109/TAC.2012.2228038 – ident: ref21 doi: 10.1109/TAC.2012.2199176 – ident: ref9 doi: 10.1109/TAC.2012.2184199 – ident: ref11 doi: 10.1109/CDC.2012.6425817 – ident: ref18 doi: 10.1109/TAC.2014.2352691 – ident: ref10 doi: 10.1109/TAC.2012.2215261 – ident: ref4 doi: 10.1109/CDC.2010.5718026 – ident: ref19 doi: 10.1109/CDC.2012.6425861 – ident: ref7 doi: 10.1109/CDC.2008.4739339 – year: 2003 ident: ref23 publication-title: Finite-Dimensional Variational Inequalities and Complementarity Problems – ident: ref12 doi: 10.1109/CDC.2011.6161503 – ident: ref13 doi: 10.1109/TAC.2013.2278132 |
SSID | ssj0016441 |
Score | 2.6421673 |
Snippet | In this paper, a distributed optimization problem with general differentiable convex objective functions is studied for continuous-time multi-agent systems... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 2239 |
SubjectTerms | Algorithms Asymptotic properties Consensus Constraints Continuous time systems Convergence Convex functions convex set constraint Distributed algorithms distributed optimization finite-time convergence Heuristic algorithms Linear programming Multi-agent systems Multiagent systems nonuniform gradient gains Optimization Optimization algorithms |
Title | Distributed Continuous-Time Optimization: Nonuniform Gradient Gains, Finite-Time Convergence, and Convex Constraint Set |
URI | https://ieeexplore.ieee.org/document/7556400 https://www.proquest.com/docview/1893706546 |
Volume | 62 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fS9xAEB7Up_bB2mrxqpZ96Evhcne7tz8S3-T0lIL6oIJvIdmdwFEvJ16C4l_vziYXqpZSCCQss7AwszPfZme-AfghR2gTniURtzqOpEQd5TGKSEhrrH8yFXpGnl_osxv561bdrkG_q4VBxJB8hgP6DHf5bmFr-lU2NEppb3PrsO7NrKnV6m4MKK43XtdvYBF3V5KjZHh9NKEcLj3w2J0I6F6FoNBT5Z0jDtFl-gnOV-tqkkp-D-oqH9jnN5SN_7vwLdhsYSY7auziM6xh-QU-_kE-uA2Px8SZS-2u0DEiqZqV9aJeRlQUwi69J5m3JZqH7GJR1iWVcM3Z6UPIEavYaTYrl302nRFobSZNKIM9FHNin2Wlawae6LUMrSgqdoXVDtxMT64nZ1HbhiGyUpgqMs57TFNoVEILXijHvQMVY2m5M8rlIisUosctLjOmSGKU41wbLtGp3PIit-OvsFEuStwFJmKF_owSc9ReLNO55s4LeAhlYus9Rw-GK82ktuUop_XdpeGsMkpSr8uUdJm2uuzBz27GfcPP8Q_ZbVJNJ9dqpQf7K-Wn7QZeppxwXGgV_-3vs_bgg6AIH3If92GjeqjxwOOTKv8eDPMFUQnhwQ |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9NAEB2VcgAOfBXUQIE9cEGKk-xmP2xuVSANtAkHUqk3y94dSxGtgxpboP767qwdq0BVIVmyZc1KK73dmWfvzBuA93KENuFZEnGr40hK1FEeo4iEtMb6K1OhZ-R8oWen8uuZOtuBflcLg4gh-QwH9BjO8t3a1vSrbGiU0n7N3YP7Pu5L1VRrdWcGFNkbv-u3sIi7Q8lRMlweTiiLSw88eycJuj-CUOiq8o8rDvFl-gTm25k1aSU_BnWVD-zVX6KN_zv1p_C4JZrssFkZz2AHy-fw6Ib84B78-kSqudTwCh0jmapVWa_rTURlIeyb9yUXbZHmR7ZYl3VJRVwX7OgyZIlV7ChblZs-m66ItjaDJpTDHso5sc-y0jUvftNtE5pRVOw7Vi_gdPp5OZlFbSOGyEphqsg47zNNoVEJLXihHPcuVIyl5c4ol4usUIieubjMmCKJUY5zbbhEp3LLi9yOX8JuuS5xH5iIFfqvlJij9maZzjV33sCTKBNb7zt6MNwik9pWpZzmd56Gr5VRknosU8IybbHswYduxM9GoeMO2z2CprNrUenBwRb8tN3Cm5QTkwvN4l_dPuodPJgt5yfpyZfF8Wt4KCjeh0zIA9itLmt849lKlb8Ni_QaSYHlDg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Distributed+Continuous-Time+Optimization%3A+Nonuniform+Gradient+Gains%2C+Finite-Time+Convergence%2C+and+Convex+Constraint+Set&rft.jtitle=IEEE+transactions+on+automatic+control&rft.au=Lin%2C+Peng&rft.au=Ren%2C+Wei&rft.au=Farrell%2C+Jay+A.&rft.date=2017-05-01&rft.issn=0018-9286&rft.eissn=1558-2523&rft.volume=62&rft.issue=5&rft.spage=2239&rft.epage=2253&rft_id=info:doi/10.1109%2FTAC.2016.2604324&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TAC_2016_2604324 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9286&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9286&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9286&client=summon |