Distributed Continuous-Time Optimization: Nonuniform Gradient Gains, Finite-Time Convergence, and Convex Constraint Set

In this paper, a distributed optimization problem with general differentiable convex objective functions is studied for continuous-time multi-agent systems with single-integrator dynamics. The objective is for multiple agents to cooperatively optimize a team objective function formed by a sum of loc...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on automatic control Vol. 62; no. 5; pp. 2239 - 2253
Main Authors Peng Lin, Wei Ren, Farrell, Jay A.
Format Journal Article
LanguageEnglish
Published New York IEEE 01.05.2017
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN0018-9286
1558-2523
DOI10.1109/TAC.2016.2604324

Cover

Abstract In this paper, a distributed optimization problem with general differentiable convex objective functions is studied for continuous-time multi-agent systems with single-integrator dynamics. The objective is for multiple agents to cooperatively optimize a team objective function formed by a sum of local objective functions with only local interaction and information while explicitly taking into account nonuniform gradient gains, finite-time convergence, and a common convex constraint set. First, a distributed nonsmooth algorithm is introduced for a special class of convex objective functions that have a quadratic-like form. It is shown that all agents reach a consensus in finite time while minimizing the team objective function asymptotically. Second, a distributed algorithm is presented for general differentiable convex objective functions, in which the interaction gains of each agent can be self-adjusted based on local states. A corresponding condition is then given to guarantee that all agents reach a consensus in finite time while minimizing the team objective function asymptotically. Third, a distributed optimization algorithm with state-dependent gradient gains is given for general differentiable convex objective functions. It is shown that the distributed continuous-time optimization problem can be solved even though the gradient gains are not identical. Fourth, a distributed tracking algorithm combined with a distributed estimation algorithm is given for general differentiable convex objective functions. It is shown that all agents reach a consensus while minimizing the team objective function in finite time. Fifth, as an extension of the previous results, a distributed constrained optimization algorithm with nonuniform gradient gains and a distributed constrained finite-time optimization algorithm are given. It is shown that both algorithms can be used to solve a distributed continuous-time optimization problem with a common convex constraint set. Numerical examples are included to illustrate the obtained theoretical results.
AbstractList In this paper, a distributed optimization problem with general differentiable convex objective functions is studied for continuous-time multi-agent systems with single-integrator dynamics. The objective is for multiple agents to cooperatively optimize a team objective function formed by a sum of local objective functions with only local interaction and information while explicitly taking into account nonuniform gradient gains, finite-time convergence, and a common convex constraint set. First, a distributed nonsmooth algorithm is introduced for a special class of convex objective functions that have a quadratic-like form. It is shown that all agents reach a consensus in finite time while minimizing the team objective function asymptotically. Second, a distributed algorithm is presented for general differentiable convex objective functions, in which the interaction gains of each agent can be self-adjusted based on local states. A corresponding condition is then given to guarantee that all agents reach a consensus in finite time while minimizing the team objective function asymptotically. Third, a distributed optimization algorithm with state-dependent gradient gains is given for general differentiable convex objective functions. It is shown that the distributed continuous-time optimization problem can be solved even though the gradient gains are not identical. Fourth, a distributed tracking algorithm combined with a distributed estimation algorithm is given for general differentiable convex objective functions. It is shown that all agents reach a consensus while minimizing the team objective function in finite time. Fifth, as an extension of the previous results, a distributed constrained optimization algorithm with nonuniform gradient gains and a distributed constrained finite-time optimization algorithm are given. It is shown that both algorithms can be used to solve a distributed continuous-time optimization problem with a common convex constraint set. Numerical examples are included to illustrate the obtained theoretical results.
Author Peng Lin
Wei Ren
Farrell, Jay A.
Author_xml – sequence: 1
  surname: Peng Lin
  fullname: Peng Lin
  email: lin_peng0103@sohu.com
  organization: Sch. of Inf. Sci. & Eng., Central South Univ., Changsha, China
– sequence: 2
  surname: Wei Ren
  fullname: Wei Ren
  email: ren@ee.ucr.edu
  organization: Dept. of Electr. & Comput. Eng., Univ. of California, Riverside, Riverside, CA, USA
– sequence: 3
  givenname: Jay A.
  surname: Farrell
  fullname: Farrell, Jay A.
  email: jay.farrell@ucr.edu
  organization: Dept. of Electr. & Comput. Eng., Univ. of California, Riverside, Riverside, CA, USA
BookMark eNp9kDtPwzAURi1UJNrCjsQSibUptuNHylYVWpAQHShzlMQ3yFVjF9vh9etJSMXAwHRl6zv30z0jNDDWAELnBE8JwbOrzXwxpZiIKRWYJZQdoSHhPI0pp8kADTEmaTyjqThBI--37VMwRobo_Ub74HTRBFDRwpqgTWMbH290DdF6H3Stv_KgrbmOHq1pjK6sq6OVy5UGE6JVro2fREttdIAeape8gXsBU8Ikyo3qPz660Ta1-RA9QThFx1W-83B2mGP0vLzdLO7ih_XqfjF_iEtGZYilSqWQlQBOBSUVV0QKShNWEiW5KmhecQCRcJVLWc1SYEkhJGGgeFGSqiiTMbrs9-6dfW3Ah2xrG2fayoyks0RiwZloU7hPlc5676DK9k7XufvMCM46vVmrN-v0Zge9LSL-IKUOP6a6I3f_gRc9qAHgt0dyLhjGyTeCWIqF
CODEN IETAA9
CitedBy_id crossref_primary_10_1016_j_neucom_2023_03_027
crossref_primary_10_1109_TCNS_2020_3029996
crossref_primary_10_1109_TCNS_2019_2915015
crossref_primary_10_1109_TCNS_2024_3469048
crossref_primary_10_1049_iet_cta_2018_5585
crossref_primary_10_1109_TSMC_2021_3138109
crossref_primary_10_1109_TNSE_2021_3133541
crossref_primary_10_1016_j_isatra_2024_03_024
crossref_primary_10_1109_TCSII_2019_2900758
crossref_primary_10_1109_TAC_2021_3079192
crossref_primary_10_1109_TCYB_2020_2988490
crossref_primary_10_1049_iet_cta_2018_6307
crossref_primary_10_1109_ACCESS_2021_3055583
crossref_primary_10_1109_TII_2023_3262340
crossref_primary_10_1007_s00521_023_08794_5
crossref_primary_10_1155_2017_5679073
crossref_primary_10_1080_00207721_2024_2366415
crossref_primary_10_1002_rnc_5927
crossref_primary_10_1016_j_automatica_2018_05_032
crossref_primary_10_1016_j_arcontrol_2019_05_006
crossref_primary_10_1016_j_automatica_2020_109459
crossref_primary_10_1016_j_neucom_2019_01_101
crossref_primary_10_1109_TCST_2021_3058845
crossref_primary_10_1109_TASE_2024_3452472
crossref_primary_10_3934_mbe_2023916
crossref_primary_10_1002_rnc_3871
crossref_primary_10_1016_j_isatra_2019_07_019
crossref_primary_10_1016_j_jfranklin_2019_12_035
crossref_primary_10_1109_TCYB_2022_3219295
crossref_primary_10_1109_TCYB_2018_2794506
crossref_primary_10_1016_j_oceaneng_2019_106341
crossref_primary_10_1016_j_neucom_2018_01_082
crossref_primary_10_1049_iet_cta_2018_5120
crossref_primary_10_1109_TCNS_2018_2808599
crossref_primary_10_1088_1674_1056_abfb5b
crossref_primary_10_1016_j_automatica_2022_110358
crossref_primary_10_1016_j_automatica_2025_112213
crossref_primary_10_1177_00202940211029332
crossref_primary_10_1007_s11424_024_2149_9
crossref_primary_10_1109_TAC_2023_3244122
crossref_primary_10_3390_math12213347
crossref_primary_10_1109_LCSYS_2020_3037038
crossref_primary_10_1002_acs_3784
crossref_primary_10_1109_TSMC_2024_3354729
crossref_primary_10_1109_TCYB_2018_2819361
crossref_primary_10_1109_TCYB_2022_3179519
crossref_primary_10_1007_s11424_023_1250_9
crossref_primary_10_1007_s12555_023_0451_2
crossref_primary_10_1080_00207721_2021_2019348
crossref_primary_10_1002_rnc_4076
crossref_primary_10_1007_s11071_020_06116_1
crossref_primary_10_1109_ACCESS_2019_2925414
crossref_primary_10_1109_ACCESS_2019_2918320
crossref_primary_10_1109_TCNS_2020_3027787
crossref_primary_10_1007_s40747_020_00265_x
crossref_primary_10_1109_TCNS_2024_3510602
crossref_primary_10_1109_TNSE_2023_3342165
crossref_primary_10_1007_s00521_021_06026_2
crossref_primary_10_1109_TAC_2024_3453117
crossref_primary_10_1109_TAC_2023_3266018
crossref_primary_10_1007_s11071_024_09952_7
crossref_primary_10_1016_j_automatica_2019_02_009
crossref_primary_10_1016_j_automatica_2023_111346
crossref_primary_10_1016_j_physd_2021_132844
crossref_primary_10_1109_JSYST_2022_3227024
crossref_primary_10_1109_TSMC_2021_3064152
crossref_primary_10_3390_math10244689
crossref_primary_10_1080_00207721_2022_2158446
crossref_primary_10_1016_j_isatra_2017_06_013
crossref_primary_10_1016_j_isatra_2024_10_016
crossref_primary_10_1109_TIE_2018_2880709
crossref_primary_10_1109_TSIPN_2023_3338467
crossref_primary_10_1109_TCYB_2019_2901256
crossref_primary_10_1109_TSG_2023_3241653
crossref_primary_10_1109_TSMC_2020_3005169
crossref_primary_10_1007_s12555_016_0453_4
crossref_primary_10_1109_TNNLS_2019_2955678
crossref_primary_10_1002_asjc_2790
crossref_primary_10_1109_TAC_2022_3209406
crossref_primary_10_1109_TSMC_2024_3351909
crossref_primary_10_1016_j_ins_2023_03_054
crossref_primary_10_1109_TCSII_2020_3041504
crossref_primary_10_1080_00207179_2017_1397289
crossref_primary_10_1016_j_jfranklin_2024_107270
crossref_primary_10_1109_ACCESS_2019_2937448
crossref_primary_10_1177_01423312241248250
crossref_primary_10_1109_TNNLS_2018_2850763
crossref_primary_10_1016_j_sysconle_2024_105872
crossref_primary_10_1109_TAC_2021_3079284
crossref_primary_10_1002_asjc_3526
crossref_primary_10_1016_j_sysconle_2020_104708
crossref_primary_10_1007_s11071_024_10118_8
crossref_primary_10_1016_j_jfranklin_2020_05_043
crossref_primary_10_1080_00207721_2020_1801885
crossref_primary_10_3390_drones9010036
crossref_primary_10_1080_00207721_2018_1502833
crossref_primary_10_1049_iet_cta_2020_0901
crossref_primary_10_1109_ACCESS_2019_2939953
crossref_primary_10_1016_j_automatica_2020_109407
crossref_primary_10_1007_s11431_022_2352_9
crossref_primary_10_1109_TSMC_2019_2931846
crossref_primary_10_1002_rnc_6699
crossref_primary_10_1016_j_neunet_2024_106791
crossref_primary_10_1016_j_ins_2022_05_116
crossref_primary_10_1109_TAC_2021_3133269
crossref_primary_10_1007_s12555_019_0431_8
crossref_primary_10_1109_TCSII_2018_2878250
crossref_primary_10_1016_j_arcontrol_2024_100983
crossref_primary_10_1109_TNSE_2022_3169151
crossref_primary_10_1016_j_arcontrol_2023_04_002
crossref_primary_10_1109_TAC_2021_3071651
crossref_primary_10_1109_TCNS_2021_3068352
crossref_primary_10_1109_TCYB_2019_2895885
crossref_primary_10_1109_TAC_2018_2872195
crossref_primary_10_1007_s11432_018_9853_9
crossref_primary_10_1016_j_neucom_2018_09_024
crossref_primary_10_1109_TAC_2022_3198113
crossref_primary_10_1002_asjc_3573
crossref_primary_10_1016_j_automatica_2020_109060
crossref_primary_10_1016_j_jfranklin_2019_06_024
crossref_primary_10_1109_TITS_2023_3314800
crossref_primary_10_1109_TSMC_2021_3098641
crossref_primary_10_1016_j_jfranklin_2019_02_009
crossref_primary_10_1016_j_ifacol_2023_10_1745
crossref_primary_10_1109_TAC_2021_3075666
crossref_primary_10_1109_TCYB_2018_2839912
crossref_primary_10_1016_j_automatica_2019_108755
crossref_primary_10_1109_TAC_2018_2884998
crossref_primary_10_1109_TCYB_2018_2852333
crossref_primary_10_1016_j_sysconle_2018_04_004
crossref_primary_10_1016_j_sysconle_2025_106019
crossref_primary_10_1109_TAC_2021_3056233
crossref_primary_10_1109_ACCESS_2019_2905874
crossref_primary_10_1109_TAC_2019_2936355
crossref_primary_10_1109_TRO_2021_3057220
crossref_primary_10_1109_TCYB_2020_3022240
crossref_primary_10_1109_ACCESS_2019_2909315
crossref_primary_10_1109_TCYB_2019_2927725
crossref_primary_10_1016_j_ins_2022_10_034
crossref_primary_10_1080_00207179_2018_1514130
crossref_primary_10_1177_0142331219866517
crossref_primary_10_3390_math13030509
crossref_primary_10_1109_TSIPN_2024_3463408
crossref_primary_10_1007_s11071_019_04826_9
crossref_primary_10_1109_TSTE_2021_3119657
crossref_primary_10_1016_j_automatica_2022_110726
crossref_primary_10_1016_j_ifacol_2023_10_1739
crossref_primary_10_1109_TAC_2024_3419185
crossref_primary_10_12677_aam_2024_137306
crossref_primary_10_1109_TAC_2020_2987379
crossref_primary_10_1016_j_isatra_2022_05_007
crossref_primary_10_1002_rnc_6408
crossref_primary_10_1109_TCNS_2019_2939642
crossref_primary_10_1109_JSYST_2024_3417255
crossref_primary_10_1109_TAC_2021_3131678
crossref_primary_10_1016_j_automatica_2020_109289
crossref_primary_10_1109_TSMC_2019_2961421
crossref_primary_10_1016_j_ins_2018_01_040
crossref_primary_10_1016_j_neucom_2021_08_140
crossref_primary_10_1109_TNNLS_2021_3132658
crossref_primary_10_1016_j_ifacol_2020_12_203
crossref_primary_10_1016_j_ins_2019_06_013
crossref_primary_10_1007_s00521_023_09067_x
crossref_primary_10_1109_TAC_2020_2979274
crossref_primary_10_1016_j_ins_2022_06_077
crossref_primary_10_1109_TSMC_2023_3274222
crossref_primary_10_1109_TAC_2021_3054072
crossref_primary_10_1109_TCNS_2019_2915626
crossref_primary_10_1016_j_physa_2019_03_063
crossref_primary_10_1016_j_sysconle_2017_02_010
crossref_primary_10_1016_j_jfranklin_2022_09_047
crossref_primary_10_1049_iet_cta_2019_0428
crossref_primary_10_1109_TNSE_2023_3311047
crossref_primary_10_1049_iet_cta_2017_1322
crossref_primary_10_1109_ACCESS_2019_2939643
crossref_primary_10_1109_TSG_2022_3147446
crossref_primary_10_1007_s11424_021_1218_6
crossref_primary_10_1007_s00521_018_3798_1
crossref_primary_10_1007_s11071_024_10628_5
crossref_primary_10_1109_ACCESS_2019_2918960
crossref_primary_10_1177_01423312241232459
crossref_primary_10_1109_TAC_2019_2917023
crossref_primary_10_1109_TCYB_2021_3052775
crossref_primary_10_1155_2017_1626452
crossref_primary_10_1109_TCYB_2018_2869249
crossref_primary_10_1002_rnc_7176
crossref_primary_10_1109_TNSE_2021_3126154
crossref_primary_10_1002_rnc_4768
crossref_primary_10_1109_TAC_2023_3335797
crossref_primary_10_1177_1550147718778501
crossref_primary_10_1109_TCYB_2018_2884762
crossref_primary_10_1109_TSMC_2024_3525007
crossref_primary_10_1109_TAC_2018_2852602
crossref_primary_10_1109_TCYB_2021_3128051
crossref_primary_10_1109_TCYB_2024_3498323
crossref_primary_10_1109_ACCESS_2020_2971729
crossref_primary_10_1109_TNNLS_2023_3337387
crossref_primary_10_1088_1674_1056_28_3_030501
crossref_primary_10_3390_math10122010
crossref_primary_10_1109_LCSYS_2022_3213745
crossref_primary_10_1016_j_jfranklin_2022_01_012
crossref_primary_10_1016_j_jfranklin_2018_03_002
crossref_primary_10_1016_j_neucom_2023_02_024
crossref_primary_10_1109_ACCESS_2019_2962234
crossref_primary_10_1109_TSMC_2020_2997697
crossref_primary_10_1109_ACCESS_2019_2930869
crossref_primary_10_1016_j_automatica_2021_109676
crossref_primary_10_1016_j_ins_2019_08_010
crossref_primary_10_1109_TSMC_2023_3331334
crossref_primary_10_1007_s11424_020_9021_3
crossref_primary_10_1109_ACCESS_2024_3434692
crossref_primary_10_1002_rnc_5053
crossref_primary_10_1002_rnc_6605
crossref_primary_10_1137_22M1515197
crossref_primary_10_1016_j_neunet_2023_11_025
crossref_primary_10_1109_TAC_2021_3095456
crossref_primary_10_1002_rnc_4547
crossref_primary_10_1002_asjc_2025
crossref_primary_10_1177_1550147717726313
crossref_primary_10_1016_j_automatica_2024_111847
crossref_primary_10_1109_TCSII_2020_2987947
crossref_primary_10_1016_j_ifacol_2017_08_240
crossref_primary_10_1016_j_neucom_2023_01_038
crossref_primary_10_1080_00207721_2018_1563222
crossref_primary_10_1016_j_automatica_2022_110390
crossref_primary_10_1109_TCYB_2019_2903852
crossref_primary_10_1016_j_automatica_2023_111087
crossref_primary_10_1002_rnc_6297
crossref_primary_10_1109_TNSE_2023_3301900
crossref_primary_10_1109_TAC_2019_2910946
crossref_primary_10_1109_TCYB_2021_3063619
crossref_primary_10_1080_00207721_2018_1533047
crossref_primary_10_9746_sicetr_55_286
crossref_primary_10_1109_TAC_2023_3318202
crossref_primary_10_1016_j_ins_2021_02_049
crossref_primary_10_1177_1550147717722513
crossref_primary_10_1016_j_sysconle_2024_105930
crossref_primary_10_3934_mbe_2023770
crossref_primary_10_1016_j_automatica_2021_109899
crossref_primary_10_1109_TSMC_2020_2966636
crossref_primary_10_1002_rnc_6842
crossref_primary_10_1109_JAS_2022_105890
crossref_primary_10_1002_rnc_5199
crossref_primary_10_1109_TCSII_2023_3338217
Cites_doi 10.1109/JSTSP.2011.2118740
10.1109/TAC.2014.2364096
10.1109/TAC.2011.2160020
10.1017/CBO9780511804441
10.1109/TAC.2008.2009515
10.1016/j.automatica.2015.11.014
10.1016/j.automatica.2016.01.055
10.1007/978-94-015-7793-9
10.1016/j.automatica.2006.06.015
10.1109/TAC.2010.2041686
10.1109/ACC.2014.6858932
10.1016/j.automatica.2015.03.001
10.1109/TAC.2010.2041610
10.1109/TAC.2012.2228038
10.1109/TAC.2012.2199176
10.1109/TAC.2012.2184199
10.1109/CDC.2012.6425817
10.1109/TAC.2014.2352691
10.1109/TAC.2012.2215261
10.1109/CDC.2010.5718026
10.1109/CDC.2012.6425861
10.1109/CDC.2008.4739339
10.1109/CDC.2011.6161503
10.1109/TAC.2013.2278132
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
7TB
8FD
FR3
JQ2
L7M
L~C
L~D
DOI 10.1109/TAC.2016.2604324
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Xplore
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Technology Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1558-2523
EndPage 2253
ExternalDocumentID 10_1109_TAC_2016_2604324
7556400
Genre orig-research
GrantInformation_xml – fundername: National Science Foundation
  grantid: ECCS-1611423
  funderid: 10.13039/100000001
– fundername: National Natural Science Foundation of China
  grantid: 61203080; 61573082; 61528301; 61120106010
  funderid: 10.13039/501100001809
– fundername: State Key Laboratory of Intelligent Control and Decision of Complex Systems of Beijing Institute of Technology
GroupedDBID -~X
.DC
0R~
29I
3EH
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IAAWW
IBMZZ
ICLAB
IDIHD
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
RIA
RIE
RNS
TAE
TN5
VH1
VJK
~02
AAYOK
AAYXX
CITATION
RIG
7SC
7SP
7TB
8FD
FR3
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c427t-7d8767f6e52621f5d1762234c1d75db2af5ee635da77f98e43b6714ed5bc1fbc3
IEDL.DBID RIE
ISSN 0018-9286
IngestDate Mon Jun 30 10:15:51 EDT 2025
Tue Jul 01 03:36:06 EDT 2025
Thu Apr 24 22:58:22 EDT 2025
Wed Aug 27 02:48:37 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c427t-7d8767f6e52621f5d1762234c1d75db2af5ee635da77f98e43b6714ed5bc1fbc3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 1893706546
PQPubID 85475
PageCount 15
ParticipantIDs crossref_citationtrail_10_1109_TAC_2016_2604324
crossref_primary_10_1109_TAC_2016_2604324
ieee_primary_7556400
proquest_journals_1893706546
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-05-01
PublicationDateYYYYMMDD 2017-05-01
PublicationDate_xml – month: 05
  year: 2017
  text: 2017-05-01
  day: 01
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on automatic control
PublicationTitleAbbrev TAC
PublicationYear 2017
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref14
ref11
ref10
ref2
ref1
ref17
ref16
ref19
ref18
facchinei (ref23) 2003
filippov (ref24) 1988
ref25
ref20
ref22
ref21
ref8
ref7
ref9
ref4
ref3
ref6
ref5
References_xml – ident: ref5
  doi: 10.1109/JSTSP.2011.2118740
– ident: ref3
  doi: 10.1109/TAC.2014.2364096
– ident: ref8
  doi: 10.1109/TAC.2011.2160020
– ident: ref22
  doi: 10.1017/CBO9780511804441
– ident: ref2
  doi: 10.1109/TAC.2008.2009515
– ident: ref15
  doi: 10.1016/j.automatica.2015.11.014
– ident: ref16
  doi: 10.1016/j.automatica.2016.01.055
– year: 1988
  ident: ref24
  publication-title: Differential Equations with Discontinuous Righthand Sides
  doi: 10.1007/978-94-015-7793-9
– ident: ref25
  doi: 10.1016/j.automatica.2006.06.015
– ident: ref1
  doi: 10.1109/TAC.2010.2041686
– ident: ref20
  doi: 10.1109/ACC.2014.6858932
– ident: ref14
  doi: 10.1016/j.automatica.2015.03.001
– ident: ref17
  doi: 10.1109/TAC.2010.2041610
– ident: ref6
  doi: 10.1109/TAC.2012.2228038
– ident: ref21
  doi: 10.1109/TAC.2012.2199176
– ident: ref9
  doi: 10.1109/TAC.2012.2184199
– ident: ref11
  doi: 10.1109/CDC.2012.6425817
– ident: ref18
  doi: 10.1109/TAC.2014.2352691
– ident: ref10
  doi: 10.1109/TAC.2012.2215261
– ident: ref4
  doi: 10.1109/CDC.2010.5718026
– ident: ref19
  doi: 10.1109/CDC.2012.6425861
– ident: ref7
  doi: 10.1109/CDC.2008.4739339
– year: 2003
  ident: ref23
  publication-title: Finite-Dimensional Variational Inequalities and Complementarity Problems
– ident: ref12
  doi: 10.1109/CDC.2011.6161503
– ident: ref13
  doi: 10.1109/TAC.2013.2278132
SSID ssj0016441
Score 2.6421673
Snippet In this paper, a distributed optimization problem with general differentiable convex objective functions is studied for continuous-time multi-agent systems...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 2239
SubjectTerms Algorithms
Asymptotic properties
Consensus
Constraints
Continuous time systems
Convergence
Convex functions
convex set constraint
Distributed algorithms
distributed optimization
finite-time convergence
Heuristic algorithms
Linear programming
Multi-agent systems
Multiagent systems
nonuniform gradient gains
Optimization
Optimization algorithms
Title Distributed Continuous-Time Optimization: Nonuniform Gradient Gains, Finite-Time Convergence, and Convex Constraint Set
URI https://ieeexplore.ieee.org/document/7556400
https://www.proquest.com/docview/1893706546
Volume 62
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fS9xAEB7Up_bB2mrxqpZ96Evhcne7tz8S3-T0lIL6oIJvIdmdwFEvJ16C4l_vziYXqpZSCCQss7AwszPfZme-AfghR2gTniURtzqOpEQd5TGKSEhrrH8yFXpGnl_osxv561bdrkG_q4VBxJB8hgP6DHf5bmFr-lU2NEppb3PrsO7NrKnV6m4MKK43XtdvYBF3V5KjZHh9NKEcLj3w2J0I6F6FoNBT5Z0jDtFl-gnOV-tqkkp-D-oqH9jnN5SN_7vwLdhsYSY7auziM6xh-QU-_kE-uA2Px8SZS-2u0DEiqZqV9aJeRlQUwi69J5m3JZqH7GJR1iWVcM3Z6UPIEavYaTYrl302nRFobSZNKIM9FHNin2Wlawae6LUMrSgqdoXVDtxMT64nZ1HbhiGyUpgqMs57TFNoVEILXijHvQMVY2m5M8rlIisUosctLjOmSGKU41wbLtGp3PIit-OvsFEuStwFJmKF_owSc9ReLNO55s4LeAhlYus9Rw-GK82ktuUop_XdpeGsMkpSr8uUdJm2uuzBz27GfcPP8Q_ZbVJNJ9dqpQf7K-Wn7QZeppxwXGgV_-3vs_bgg6AIH3If92GjeqjxwOOTKv8eDPMFUQnhwQ
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9NAEB2VcgAOfBXUQIE9cEGKk-xmP2xuVSANtAkHUqk3y94dSxGtgxpboP767qwdq0BVIVmyZc1KK73dmWfvzBuA93KENuFZEnGr40hK1FEeo4iEtMb6K1OhZ-R8oWen8uuZOtuBflcLg4gh-QwH9BjO8t3a1vSrbGiU0n7N3YP7Pu5L1VRrdWcGFNkbv-u3sIi7Q8lRMlweTiiLSw88eycJuj-CUOiq8o8rDvFl-gTm25k1aSU_BnWVD-zVX6KN_zv1p_C4JZrssFkZz2AHy-fw6Ib84B78-kSqudTwCh0jmapVWa_rTURlIeyb9yUXbZHmR7ZYl3VJRVwX7OgyZIlV7ChblZs-m66ItjaDJpTDHso5sc-y0jUvftNtE5pRVOw7Vi_gdPp5OZlFbSOGyEphqsg47zNNoVEJLXihHPcuVIyl5c4ol4usUIieubjMmCKJUY5zbbhEp3LLi9yOX8JuuS5xH5iIFfqvlJij9maZzjV33sCTKBNb7zt6MNwik9pWpZzmd56Gr5VRknosU8IybbHswYduxM9GoeMO2z2CprNrUenBwRb8tN3Cm5QTkwvN4l_dPuodPJgt5yfpyZfF8Wt4KCjeh0zIA9itLmt849lKlb8Ni_QaSYHlDg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Distributed+Continuous-Time+Optimization%3A+Nonuniform+Gradient+Gains%2C+Finite-Time+Convergence%2C+and+Convex+Constraint+Set&rft.jtitle=IEEE+transactions+on+automatic+control&rft.au=Lin%2C+Peng&rft.au=Ren%2C+Wei&rft.au=Farrell%2C+Jay+A.&rft.date=2017-05-01&rft.issn=0018-9286&rft.eissn=1558-2523&rft.volume=62&rft.issue=5&rft.spage=2239&rft.epage=2253&rft_id=info:doi/10.1109%2FTAC.2016.2604324&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TAC_2016_2604324
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9286&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9286&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9286&client=summon