Distributed Continuous-Time Optimization: Nonuniform Gradient Gains, Finite-Time Convergence, and Convex Constraint Set
In this paper, a distributed optimization problem with general differentiable convex objective functions is studied for continuous-time multi-agent systems with single-integrator dynamics. The objective is for multiple agents to cooperatively optimize a team objective function formed by a sum of loc...
Saved in:
Published in | IEEE transactions on automatic control Vol. 62; no. 5; pp. 2239 - 2253 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.05.2017
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
ISSN | 0018-9286 1558-2523 |
DOI | 10.1109/TAC.2016.2604324 |
Cover
Loading…
Summary: | In this paper, a distributed optimization problem with general differentiable convex objective functions is studied for continuous-time multi-agent systems with single-integrator dynamics. The objective is for multiple agents to cooperatively optimize a team objective function formed by a sum of local objective functions with only local interaction and information while explicitly taking into account nonuniform gradient gains, finite-time convergence, and a common convex constraint set. First, a distributed nonsmooth algorithm is introduced for a special class of convex objective functions that have a quadratic-like form. It is shown that all agents reach a consensus in finite time while minimizing the team objective function asymptotically. Second, a distributed algorithm is presented for general differentiable convex objective functions, in which the interaction gains of each agent can be self-adjusted based on local states. A corresponding condition is then given to guarantee that all agents reach a consensus in finite time while minimizing the team objective function asymptotically. Third, a distributed optimization algorithm with state-dependent gradient gains is given for general differentiable convex objective functions. It is shown that the distributed continuous-time optimization problem can be solved even though the gradient gains are not identical. Fourth, a distributed tracking algorithm combined with a distributed estimation algorithm is given for general differentiable convex objective functions. It is shown that all agents reach a consensus while minimizing the team objective function in finite time. Fifth, as an extension of the previous results, a distributed constrained optimization algorithm with nonuniform gradient gains and a distributed constrained finite-time optimization algorithm are given. It is shown that both algorithms can be used to solve a distributed continuous-time optimization problem with a common convex constraint set. Numerical examples are included to illustrate the obtained theoretical results. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ISSN: | 0018-9286 1558-2523 |
DOI: | 10.1109/TAC.2016.2604324 |