Density of small dendritic spines and microtubule-associated-protein-2 immunoreactivity in the primary auditory cortex of subjects with schizophrenia

Previously, we demonstrated that dendritic spine density (DSD) in deep layer 3 of the primary auditory cortex (A1) is lower, due to having fewer small spines, in subjects with schizophrenia (SZ) than non-psychiatric control (NPC) subjects. We also previously demonstrated that microtubule-associated-...

Full description

Saved in:
Bibliographic Details
Published inNeuropsychopharmacology (New York, N.Y.) Vol. 44; no. 6; pp. 1055 - 1061
Main Authors McKinney, Brandon C., MacDonald, Matthew L., Newman, Jason T., Shelton, Micah A., DeGiosio, Rebecca A., Kelly, Ryan M., Fish, Kenneth N., Sampson, Allan R., Lewis, David A., Sweet, Robert A.
Format Journal Article
LanguageEnglish
Published England Nature Publishing Group 01.05.2019
Springer International Publishing
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Previously, we demonstrated that dendritic spine density (DSD) in deep layer 3 of the primary auditory cortex (A1) is lower, due to having fewer small spines, in subjects with schizophrenia (SZ) than non-psychiatric control (NPC) subjects. We also previously demonstrated that microtubule-associated-protein-2 immunoreactivity (MAP2-IR) in A1 deep layer 3 is lower, and positively correlated with DSD, in SZ subjects. Here, we first sought to confirm these findings in an independent cohort of 25 SZ-NPC subject pairs (cohort 1). We used immunohistochemistry and confocal microscopy to measure DSD and MAP2-IR in A1 deep layer 3. Consistent with previous studies, both DSD and MAP2-IR were lower in SZ subjects. We then tested the hypothesis that MAP2-IR mediates the effect of SZ on DSD in a cohort of 45 SZ-NPC subject pairs (combined cohort) that included all subjects from cohort 1 and two previously studied cohorts. Based on the distribution of MAP2-IR values in NPC subjects, we categorized each SZ subject as having either low MAP2-IR (SZ MAP2-IR(low)) or normal MAP2-IR (SZ MAP2-IR(normal)). Among SZ MAP-IR(low) subjects, mean DSD was significantly lower than in NPC subjects. However, mean DSD did not differ between SZ MAP2-IR(normal) and NPC subjects. Moreover, MAP2-IR statistically mediated small spine differences, with lower MAP2-IR values associated with fewer small spines. Our findings confirm that low density of small spines and low MAP2-IR are robust SZ phenotypes and suggest that MAP2-IR mediates the effect of SZ on DSD.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:0893-133X
1740-634X
1740-634X
DOI:10.1038/s41386-019-0350-7