Focusing a beam beyond the diffraction limit using a hyperlens-based device

A super-focusing device composed of a focusing objective and a hyperlens is proposed to focus an incident plane wave into the deep subwavelength dimension. In the device, the objective converts the incident plane wave into a convergent one. The half cylindrical hyperlens can support high wave vector...

Full description

Saved in:
Bibliographic Details
Published inChinese physics B Vol. 20; no. 11; pp. 506 - 511
Main Author 郑国兴 张瑞瑛 李松 何平安 周辉
Format Journal Article
LanguageEnglish
Published IOP Publishing 01.11.2011
Subjects
Online AccessGet full text
ISSN1674-1056
2058-3834
DOI10.1088/1674-1056/20/11/117802

Cover

More Information
Summary:A super-focusing device composed of a focusing objective and a hyperlens is proposed to focus an incident plane wave into the deep subwavelength dimension. In the device, the objective converts the incident plane wave into a convergent one. The half cylindrical hyperlens can support high wave vector k modes propagating towards its core. So the convergent wave can be focused into an ultrasmall spot beyond the diffraction limit. The layout is proposed for the super-focusing device and its characteristics are investigated theoretically. Numerical simulations verify that the focused beams are confined in a spot with a diameter of 16.3 nm in the focal plane of the focusing objective with a numerical aperture of 0.6, which corresponds to a super-resolution spot of λ0/23 (λ0 is the wavelength in vacuum). The simulations confirm the effectiveness of the proposed device.
Bibliography:Zheng GuoXing,ZhangRuiYing,LiSong,He Ping-An,Zhou Hui(School of Electronic Information, Wuhan University, Wuhan 430079, China)
hyperlens;objective; super-focusing device;resolution
A super-focusing device composed of a focusing objective and a hyperlens is proposed to focus an incident plane wave into the deep subwavelength dimension. In the device, the objective converts the incident plane wave into a convergent one. The half cylindrical hyperlens can support high wave vector k modes propagating towards its core. So the convergent wave can be focused into an ultrasmall spot beyond the diffraction limit. The layout is proposed for the super-focusing device and its characteristics are investigated theoretically. Numerical simulations verify that the focused beams are confined in a spot with a diameter of 16.3 nm in the focal plane of the focusing objective with a numerical aperture of 0.6, which corresponds to a super-resolution spot of λ0/23 (λ0 is the wavelength in vacuum). The simulations confirm the effectiveness of the proposed device.
11-5639/O4
ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
ISSN:1674-1056
2058-3834
DOI:10.1088/1674-1056/20/11/117802