Creating Custom Neural Circuits on Multiple Electrode Arrays Utilizing Optical Tweezers for Precise Nerve Cell Placement

Precise creation, maintenance, and monitoring of neuronal circuits would facilitate the investigation of subjects such as neuronal development or synaptic plasticity, or assist in the development of neuronal prosthetics. Here we present a method to precisely control the placement of multiple types o...

Full description

Saved in:
Bibliographic Details
Published inMethods and protocols Vol. 3; no. 2; p. 44
Main Authors Kung, Frank H., Townes-Anderson, Ellen
Format Journal Article
LanguageEnglish
Published MDPI AG 01.06.2020
MDPI
Subjects
Online AccessGet full text
ISSN2409-9279
2409-9279
DOI10.3390/mps3020044

Cover

Loading…
More Information
Summary:Precise creation, maintenance, and monitoring of neuronal circuits would facilitate the investigation of subjects such as neuronal development or synaptic plasticity, or assist in the development of neuronal prosthetics. Here we present a method to precisely control the placement of multiple types of neuronal retinal cells onto a commercially available multiple electrode array (MEA), using custom-built optical tweezers. We prepared the MEAs by coating a portion of the MEA with a non-adhesive substrate (Poly (2-hydroxyethyl methacrylate)), and the electrodes with an adhesive cell growth substrate. We then dissociated the retina of adult tiger salamanders, plated them onto prepared MEAs, and utilized the optical tweezers to create retinal circuitry mimicking in vivo connections. In our hands, the optical tweezers moved ~75% of photoreceptors, bipolar cells, and multipolar cells, an average of ~2000 micrometers, at a speed of ~16 micrometers/second. These retinal circuits were maintained in vitro for seven days. We confirmed electrophysiological activity by stimulating the photoreceptors with the MEA and measuring their response with calcium imaging. In conclusion, we have developed a method of utilizing optical tweezers in conjunction with MEAs that allows for the design and maintenance of custom neural circuits for functional analysis.
ISSN:2409-9279
2409-9279
DOI:10.3390/mps3020044