Intracellular auxin transport in pollen PIN8, PIN5 and PILS5
Cellular auxin homeostasis is controlled at many levels that include auxin biosynthesis, auxin metabolism, and auxin transport. In addition to intercellular auxin transport, auxin homeostasis is modulated by auxin flow through the endoplasmic reticulum (ER). PIN5, a member of the auxin efflux facili...
Saved in:
Published in | Plant signaling & behavior Vol. 7; no. 11; pp. 1504 - 1505 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
United States
Taylor & Francis
01.11.2012
Landes Bioscience |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Cellular auxin homeostasis is controlled at many levels that include auxin biosynthesis, auxin metabolism, and auxin transport. In addition to intercellular auxin transport, auxin homeostasis is modulated by auxin flow through the endoplasmic reticulum (ER). PIN5, a member of the auxin efflux facilitators PIN protein family, was the first protein to be characterized as an intracellular auxin transporter. We demonstrated that PIN8, the closest member of the PIN family to PIN5, represents another ER-residing auxin transporter. PIN8 is specifically expressed in the male gametophyte and is located in the ER. By combining genetic, physiological, cellular and biochemical data we demonstrated a role for PIN8 in intracellular auxin homeostasis. Although our investigation shed light on intracellular auxin transport in pollen, the physiological function of PIN8 still remains to be elucidated. Here we discuss our data taking in consideration other recent findings. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 1559-2316 1559-2324 1559-2324 |
DOI: | 10.4161/psb.21953 |