ECG-Based Subject Identification Using Statistical Features and Random Forest

In this work, a nonfiducial electrocardiogram (ECG) identification algorithm based on statistical features and random forest classifier is presented. Two feature extraction approaches are investigated: direct and band-based approaches. In the former, eleven simple statistical features are directly e...

Full description

Saved in:
Bibliographic Details
Published inJournal of sensors Vol. 2019; no. 2019; pp. 1 - 13
Main Authors Aljafar, Latifah M., Alshebeili, Saleh, Alrshoud, Saud R., Alotaiby, Turky N.
Format Journal Article
LanguageEnglish
Published Cairo, Egypt Hindawi Publishing Corporation 2019
Hindawi
John Wiley & Sons, Inc
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:In this work, a nonfiducial electrocardiogram (ECG) identification algorithm based on statistical features and random forest classifier is presented. Two feature extraction approaches are investigated: direct and band-based approaches. In the former, eleven simple statistical features are directly extracted from a single-lead ECG signal segment. In the latter, the single-lead ECG signal is first decomposed into bands, and the statistical features are extracted from each segment of a given band and concatenated to form the feature vector. Nonoverlapping segments of different lengths (i.e., 1, 3, 5, 7, 10, or 15 sec) are examined. The extracted feature vectors are applied to a random forest classifier, for the purpose of identification. This study considers 290 reference subjects from the ECG database of the Physikalisch-Technische Bundesanstalt (PTB). The proposed identification algorithm achieved an accuracy rate of 99.61% utilizing the single limb lead (I) with the band-based approach. A single chest lead (V1), augmented limb lead (aVF), and Frank’s lead (Vx) achieved an accuracy rate of 99.37%, 99.76%, and 99.76%, respectively, using the same approach.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1687-725X
1687-7268
DOI:10.1155/2019/6751932