Quaternary structure of the neuronal protein NAP-22 in aqueous solution

NAP-22, a myristoylated, anionic protein, is a major protein component of the detergent-insoluble fraction of neurons. After extraction from the membrane, it is readily soluble in water. NAP-22 will partition only into membranes with specific lipid compositions. The lipid specificity is not expected...

Full description

Saved in:
Bibliographic Details
Published inBiochimica et biophysica acta Vol. 1650; no. 1; pp. 50 - 58
Main Authors Epand, Richard M., Braswell, Emory H., Yip, Christopher M., Epand, Raquel F., Maekawa, Shohei
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier B.V 21.08.2003
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:NAP-22, a myristoylated, anionic protein, is a major protein component of the detergent-insoluble fraction of neurons. After extraction from the membrane, it is readily soluble in water. NAP-22 will partition only into membranes with specific lipid compositions. The lipid specificity is not expected for a monomeric myristoylated protein. We have studied the self-association of NAP-22 in solution. Sedimentation velocity experiments indicated that the protein is largely associated. The low concentration limiting s value is ∼1.3 S, indicating a highly asymmetric monomer. In contrast, a nonmyristoylated form of the protein shows no evidence of oligomerization by velocity sedimentation and has an s value corresponding to the smallest component of NAP-22, but without the presence of higher oligomers. Sedimentation equilibrium runs indicate that there is a rapidly reversible equilibrium between monomeric and oligomeric forms of the protein followed by a slower, more irreversible association into larger aggregates. In situ atomic force microscopy of the protein deposited on mica from freshly prepared dilute solution revealed dimers on the mica surface. The values of the association constants obtained from the sedimentation equilibrium data suggest that the weight concentration of the monomer exceeds that of the dimer below a total protein concentration of 0.04 mg/ml. Since the concentration of NAP-22 in the neurons of the developing brain is ∼0.6 mg/ml, if the protein were in solution, it would be in oligomeric form and bind specifically to cholesterol-rich domains. We demonstrate, using fluorescence resonance energy transfer, that at low concentrations, NAP-22 labeled with Texas Red binds equally well to liposomes of phosphatidylcholine either with or without the addition of 40 mol% cholesterol. Thus, oligomerization of NAP-22 contributes to its lipid selectivity during membrane binding.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1570-9639
0006-3002
1878-1454
1878-2434
DOI:10.1016/S1570-9639(03)00191-2