BMP-induced osteogenesis on the surface of hydroxyapatite with geometrically feasible and nonfeasible structures: topology of osteogenesis

Bone morphogenetic protein (BMP) is known to require a suitable carrier to induce ectopic bone formation in vivo. Hydroxyapatite ceramics have been reported to be effective in some forms but ineffective in others as a carrier of BMP-induced bone formation. In this study we compare three geometricall...

Full description

Saved in:
Bibliographic Details
Published inJournal of biomedical materials research Vol. 39; no. 2; p. 190
Main Authors Kuboki, Y, Takita, H, Kobayashi, D, Tsuruga, E, Inoue, M, Murata, M, Nagai, N, Dohi, Y, Ohgushi, H
Format Journal Article
LanguageEnglish
Published United States 01.02.1998
Subjects
Online AccessGet more information

Cover

Loading…
More Information
Summary:Bone morphogenetic protein (BMP) is known to require a suitable carrier to induce ectopic bone formation in vivo. Hydroxyapatite ceramics have been reported to be effective in some forms but ineffective in others as a carrier of BMP-induced bone formation. In this study we compare three geometrically different forms of hydroxyapatite to examine their functions as carriers of BMP-induced bone formation. A fraction containing all the active BMPs (BMP cocktail) was partially purified from a 4M guanidine extract from bovine bone by a three-step chromatographic procedure. The BMP cocktail was combined with each of three forms of hydroxyapatite--solid particles (SPHAP), porous particles (PPHAP), and coral-replicated porous tablets (coral-HAP)--and implanted subcutaneously into rats. Both the PPHAP and coral-HAP systems induced osteogenesis 2 weeks after implantation, as evidenced by morphological and biochemical observations. Details of the osteogenetic process were followed by double-fluorescence labeling in the coral-HAP system to confirm bone formation on the surface of hydroxyapatite. However, there was no evidence of osteogenesis or chondrogenesis in the SPHAP system. The results indicate that the geometry of the interconnected porous structure in PPHAP and coral-HAP create spaces for vasculature that lead to osteogenesis while the smooth structure and close contact of particles in SPHAP inhibit vascular formation and proliferation of mesenchymal cells, preventing bone and cartilage formation. It was concluded that the geometrical structure in hydroxyapatite ceramics that induces vasculature is crucial as a carrier for BMP-induced bone formation.
ISSN:0021-9304
DOI:10.1002/(SICI)1097-4636(199802)39:2<190::AID-JBM4>3.0.CO;2-K