Time-Resolved Grazing-Incidence Diffraction Studies of Thin Films Using an Imaging-Plate Camera and Focusing Monochromator

A multiple imaging-plate (IP) detector system and focusing monochromator have been developed and successfully applied to the time-resolved study of phase transitions in Langmuir-Blodgett (LB) films by grazing-incidence X-ray diffraction (GIXD). The first reported application of imaging plates to a G...

Full description

Saved in:
Bibliographic Details
Published inJournal of synchrotron radiation Vol. 5; no. 2; pp. 107 - 111
Main Authors Foran, G. J., Gentle, I. R., Garrett, R. F., Creagh, D. C., Peng, J. B., Barnes, G. T.
Format Journal Article
LanguageEnglish
Published 5 Abbey Square, Chester, Cheshire CH1 2HU, England International Union of Crystallography 01.03.1998
Online AccessGet full text

Cover

Loading…
More Information
Summary:A multiple imaging-plate (IP) detector system and focusing monochromator have been developed and successfully applied to the time-resolved study of phase transitions in Langmuir-Blodgett (LB) films by grazing-incidence X-ray diffraction (GIXD). The first reported application of imaging plates to a GIXD study was carried out by our group and proved to be very successful in the determination of thin-film structure [Foran, Peng, Steitz, Barnes & Gentle (1996). Langmuir, 12, 774-777]. To extend the capabilities of this system, an IP camera was designed and built which can accommodate up to 13 IPs (40 x 20 cm) inside the vacuum chamber of the main diffractometer at the Australian Beamline at the Photon Factory. The camera allows the enclosed IPs to be successively exposed and stored inside the diffractometer for later scanning. The focusing monochromator employed in this technique combines fixed exit-beam height with sagittal focusing of the second crystal and delivers a gain in flux of >/=20 times when measured through a 0.1 x 0.1 mm aperture. The utility of the system incorporating the IP camera and the focusing monochromator has been demonstrated through the study of temperature-dependent phase transitions in LB films of metal fatty acids.
Bibliography:ark:/67375/WNG-T78FSDQX-F
istex:A2A1536CA77F6151FF2029F6580804AE7DC6508A
ArticleID:JSYHE2003
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1600-5775
0909-0495
1600-5775
DOI:10.1107/S0909049597018128