Use of 3-D magnetic resonance electrical impedance tomography in detecting human cerebral stroke: a simulation study
We have developed a new three dimensional (3-D) conductivity imaging approach and have used it to detect human brain conductivity changes corresponding to acute cerebral stroke. The proposed Magnetic Resonance Electrical Impedance Tomography (MREIT) approach is based on the J-Substitution algorithm...
Saved in:
Published in | Journal of Zhejiang University. B. Science Vol. 6; no. 5; pp. 438 - 445 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
China
Springer Nature B.V
01.05.2005
School of Electrical Engineering, Zhejiang University, Hangzhou 310027, China%Department of Biomedical Engineering, University of Minnesota, MN, USA Zhejiang University Press |
Subjects | |
Online Access | Get full text |
ISSN | 1673-1581 1862-1783 |
DOI | 10.1631/jzus.2005.B0438 |
Cover
Abstract | We have developed a new three dimensional (3-D) conductivity imaging approach and have used it to detect human brain conductivity changes corresponding to acute cerebral stroke. The proposed Magnetic Resonance Electrical Impedance Tomography (MREIT) approach is based on the J-Substitution algorithm and is expanded to imaging 3-D subject conductivity distribution changes. Computer simulation studies have been conducted to evaluate the present MREIT imaging approach.Simulations of both types of cerebral stroke, hemorrhagic stroke and ischemic stroke, were performed on a four-sphere head model.Simulation results showed that the correlation coefficient (CC) and relative error (RE) between target and estimated conductivity distributions were 0.9245±0.0068 and 8.9997%±0.0084%, for hemorrhagic stroke, and 0.6748±0.0197 and 8.8986%±0.0089%,for ischemic stroke, when the SNR (signal-to-noise radio) of added GWN (Gaussian White Noise) was 40. The convergence characteristic was also evaluated according to the changes of CC and RE with different iteration numbers. The CC increases and RE decreases monotonously with the increasing number of iterations. The present simulation results show the feasibility of the proposed 3-D MREIT approach in hemorrhagic and ischemic stroke detection and suggest that the method may become a useful alternative in clinical diagnosis of acute cerebral stroke in humans. |
---|---|
AbstractList | We have developed a new three dimensional (3-D) conductivity imaging approach and have used it to detect human brain conductivity changes corresponding to acute cerebral stroke. The proposed Magnetic Resonance Electrical Impedance Tomography (MREIT) approach is based on the J-Substitution algorithm and is expanded to imaging 3-D subject conductivity distribution changes. Computer simulation studies have been conducted to evaluate the present MREIT imaging approach. Simulations of both types of cerebral stroke, hemorrhagic stroke and ischemic stroke, were performed on a four-sphere head model. Simulation results showed that the correlation coefficient (CC) and relative error (RE) between target and estimated conductivity distributions were 0.9245±0.0068 and 8.9997%±0.0084%, for hemorrhagic stroke, and 0.6748±0.0197 and 8.8986%±0.0089%, for ischemic stroke, when the SNR (signal-to-noise radio) of added GWN (Gaussian White Noise) was 40. The convergence characteristic was also evaluated according to the changes of CC and RE with different iteration numbers. The CC increases and RE decreases monotonously with the increasing number of iterations. The present simulation results show the feasibility of the proposed 3-D MREIT approach in hemorrhagic and ischemic stroke detection and suggest that the method may become a useful alternative in clinical diagnosis of acute cerebral stroke in humans. We have developed a new three dimensional (3-D) conductivity imaging approach and have used it to detect human brain conductivity changes corresponding to acute cerebral stroke. The proposed Magnetic Resonance Electrical Impedance Tomography (MREIT) approach is based on the J-Substitution algorithm and is expanded to imaging 3-D subject conductivity distribution changes. Computer simulation studies have been conducted to evaluate the present MREIT imaging approach. Simulations of both types of cerebral stroke, hemorrhagic stroke and ischemic stroke, were performed on a four-sphere head model. Simulation results showed that the correlation coefficient (CC) and relative error (RE) between target and estimated conductivity distributions were 0.9245+/-0.0068 and 8.9997%+/-0.0084%, for hemorrhagic stroke, and 0.6748+/- 0.0197 and 8.8986%+/-0.0089%, for ischemic stroke, when the SNR (signal-to-noise radio) of added GWN (Gaussian White Noise) was 40. The convergence characteristic was also evaluated according to the changes of CC and RE with different iteration numbers. The CC increases and RE decreases monotonously with the increasing number of iterations. The present simulation results show the feasibility of the proposed 3-D MREIT approach in hemorrhagic and ischemic stroke detection and suggest that the method may become a useful alternative in clinical diagnosis of acute cerebral stroke in humans. We have developed a new three dimensional (3-D) conductivity imaging approach and have used it to detect human brain conductivity changes corresponding to acute cerebral stroke. The proposed Magnetic Resonance Electrical Impedance Tomography (MREIT) approach is based on the J-Substitution algorithm and is expanded to imaging 3-D subject conductivity distribution changes. Computer simulation studies have been conducted to evaluate the present MREIT imaging approach. Simulations of both types of cerebral stroke, hemorrhagic stroke and ischemic stroke, were performed on a four-sphere head model. Simulation results showed that the correlation coefficient (CC) and relative error (RE) between target and estimated conductivity distributions were 0.9245+/-0.0068 and 8.9997%+/-0.0084%, for hemorrhagic stroke, and 0.6748+/-0.0197 and 8.8986%+/-0.0089%, for ischemic stroke, when the SNR (signal-to-noise radio) of added GWN (Gaussian White Noise) was 40. The convergence characteristic was also evaluated according to the changes of CC and RE with different iteration numbers. The CC increases and RE decreases monotonously with the increasing number of iterations. The present simulation results show the feasibility of the proposed 3-D MREIT approach in hemorrhagic and ischemic stroke detection and suggest that the method may become a useful alternative in clinical diagnosis of acute cerebral stroke in humans.We have developed a new three dimensional (3-D) conductivity imaging approach and have used it to detect human brain conductivity changes corresponding to acute cerebral stroke. The proposed Magnetic Resonance Electrical Impedance Tomography (MREIT) approach is based on the J-Substitution algorithm and is expanded to imaging 3-D subject conductivity distribution changes. Computer simulation studies have been conducted to evaluate the present MREIT imaging approach. Simulations of both types of cerebral stroke, hemorrhagic stroke and ischemic stroke, were performed on a four-sphere head model. Simulation results showed that the correlation coefficient (CC) and relative error (RE) between target and estimated conductivity distributions were 0.9245+/-0.0068 and 8.9997%+/-0.0084%, for hemorrhagic stroke, and 0.6748+/-0.0197 and 8.8986%+/-0.0089%, for ischemic stroke, when the SNR (signal-to-noise radio) of added GWN (Gaussian White Noise) was 40. The convergence characteristic was also evaluated according to the changes of CC and RE with different iteration numbers. The CC increases and RE decreases monotonously with the increasing number of iterations. The present simulation results show the feasibility of the proposed 3-D MREIT approach in hemorrhagic and ischemic stroke detection and suggest that the method may become a useful alternative in clinical diagnosis of acute cerebral stroke in humans. TM153; We have developed a new three dimensional (3-D) conductivity imaging approach and have used it to detect human brain conductivity changes corresponding to acute cerebral stroke. The proposed Magnetic Resonance Electrical Impedance Tomography (MREIT) approach is based on the J-Substitution algorithm and is expanded to imaging 3-D subject conductivity distribution changes. Computer simulation studies have been conducted to evaluate the present MREIT imaging approach.Simulations of both types of cerebral stroke, hemorrhagic stroke and ischemic stroke, were performed on a four-sphere head model Simulation results showed that the correlation coefficient (CC) and relative error (RE) between target and estimated conductivity distributions were 0.9245±0.0068 and 8.9997%±0.0084%, for hemorrhagic stroke, and 0.6748±0.0197 and 8.8986%±0.0089%,for ischemic stroke, when the SNR (signal-to-noise radio) of added GWN (Gaussian White Noise) was 40. The convergence characteristic was also evaluated according to the changes of CC and RE with different iteration numbers. The CC increases and RE decreases monotonously with the increasing number of iterations. The present simulation results show the feasibility of the proposed 3-D MREIT approach in hemorrhagic and ischemic stroke detection and suggest that the method may become a useful alternative in clinical diagnosis of acute cerebral stroke in humans. |
Author | 高诺 朱善安 贺斌 |
AuthorAffiliation | DepartmentofBiomedicalEngineering,UniversityofMinnesota,MN,USA SchoolofElectricalEngineering,ZhejiangUniversity,Hangzhou310027,China |
AuthorAffiliation_xml | – name: School of Electrical Engineering, Zhejiang University, Hangzhou 310027, China%Department of Biomedical Engineering, University of Minnesota, MN, USA – name: 2 Department of Biomedical Engineering, University of Minnesota, MN, USA – name: 1 School of Electrical Engineering, Zhejiang University, Hangzhou 310027, China |
Author_xml | – sequence: 1 fullname: 高诺 朱善安 贺斌 |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/15822161$$D View this record in MEDLINE/PubMed |
BookMark | eNqFUstu1DAUjVARfcCaHbJAYoGUqV9xnA0StLykSmzo2nKcm4yniT21k9Lpp_Rb-Cd-Ac-DEVRCyItrXZ9z7j2-9zg7cN5Blj0neEYEI6eLuynOKMbF7D3mTD7KjogUNCelZAfpLkqWk0KSw-w4xgXGnONSPMkOU45SIshRdnMZAfkWsfwcDbpzMFqDAkTvtDOAoAczBmt0j-ywhGaTHP3gu6CX8xWyDjUwJox1HZpPg3bIQIA6JEIcg7-Cnz_ukUbRDlOvR-tdSk_N6mn2uNV9hGe7eJJdfvzw7exzfvH105ezdxe54TT13kiNq1pgKYmmLRcNriFFWjRGcFmZlpGyarkWDStqljiAJeMYOBWsMbJkJ9nbre5yqgdoDLgxtaaWwQ46rJTXVv394uxcdf5GESarUvAk8GYr8F27VrtOLfwUXGpZ3S2a29u6VrD-_nQoS-DXu2rBX08QRzXYaKDvtQM_RSXKkhaS0_8CSVUyQjeKrx4A9_VpiUlRJL0ioV786XJv7_eYE6DYAkzwMQZolbHjZhzJtO0VwWq9Tmq9TmrtR23WKfFOH_D20v9kvNwx5t5112ktVK3NVWt7SO1wiWlVsV9gP9sI |
CitedBy_id | crossref_primary_10_1109_MEMB_2008_923953 crossref_primary_10_1088_0031_9155_54_14_012 crossref_primary_10_3389_fpubh_2021_794167 crossref_primary_10_1186_s40779_022_00370_7 |
Cites_doi | 10.1088/0967-3334/15/2A/024 10.1055/s-2000-7170 10.1109/TMI.2002.800572 10.1088/0967-3334/21/1/315 10.1007/BF02474537 10.1109/TMI.2002.800604 10.1109/10.915715 10.1109/42.97586 10.3109/03091909709070013 10.1378/chest.114.5_Supplement.683S 10.1088/0143-0815/13/1/006 10.1109/42.640752 10.1111/j.1749-6632.1999.tb09500.x 10.1111/j.0954-6820.1943.tb11253.x 10.1111/j.1748-1716.1980.tb06544.x 10.1088/0967-3334/24/2/368 10.1109/10.979355 10.1109/19.65824 10.1109/10.554770 10.1109/IEMBS.1996.651975 |
ClassificationCodes | TM153 |
ContentType | Journal Article |
Copyright | Zhejiang University Press 2005. Copyright © Wanfang Data Co. Ltd. All Rights Reserved. Copyright © 2005, Journal of Zhejiang University Science 2005 |
Copyright_xml | – notice: Zhejiang University Press 2005. – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved. – notice: Copyright © 2005, Journal of Zhejiang University Science 2005 |
DBID | 2RA 92L CQIGP W91 ~WA AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QO 7QP 7TK 8FD FR3 K9. P64 7X8 2B. 4A8 92I 93N PSX TCJ 5PM |
DOI | 10.1631/jzus.2005.B0438 |
DatabaseName | 维普_期刊 中文科技期刊数据库-CALIS站点 维普中文期刊数据库 中文科技期刊数据库-医药卫生 中文科技期刊数据库- 镜像站点 CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Biotechnology Research Abstracts Calcium & Calcified Tissue Abstracts Neurosciences Abstracts Technology Research Database Engineering Research Database ProQuest Health & Medical Complete (Alumni) Biotechnology and BioEngineering Abstracts MEDLINE - Academic Wanfang Data Journals - Hong Kong WANFANG Data Centre Wanfang Data Journals 万方数据期刊 - 香港版 China Online Journals (COJ) China Online Journals (COJ) PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Biotechnology Research Abstracts Technology Research Database ProQuest Health & Medical Complete (Alumni) Engineering Research Database Calcium & Calcified Tissue Abstracts Neurosciences Abstracts Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitleList | Neurosciences Abstracts Biotechnology Research Abstracts MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1862-1783 |
EndPage | 445 |
ExternalDocumentID | PMC1389764 zjdxxbb_e200505023 15822161 10_1631_jzus_2005_B0438 15480299 |
Genre | Research Support, U.S. Gov't, Non-P.H.S Research Support, U.S. Gov't, P.H.S Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NIBIB NIH HHS grantid: R01 EB000178 – fundername: NIBIB NIH HHS grantid: R01EB00178 – fundername: the National Science Foundation; the National Institues of Health funderid: (BES-0411898); (R01EB00178) |
GroupedDBID | -56 -5G -BR -EM -Y2 -~C .86 .VR 06C 06D 0R~ 0VY 188 1N0 29L 29~ 2B. 2C. 2J2 2JN 2JY 2KG 2KM 2LR 2RA 2WC 30V 3V. 4.4 406 408 40D 40E 53G 5GY 5VR 5VS 67N 6NX 7X2 7X7 7XC 88E 8AO 8CJ 8FE 8FG 8FH 8FI 8FJ 8UJ 92E 92I 92L 92Q 93N 95- 95. 95~ 96X AAAVM AABHQ AAFGU AAHNG AAIAL AAJKR AAKDD AANXM AANZL AARHV AARTL AAYIU AAYQN ABBBX ABDZT ABECU ABFGW ABFTV ABHLI ABJCF ABJOX ABKAS ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABSXP ABTEG ABTHY ABTMW ABUWG ABXPI ACBMV ACBRV ACBXY ACBYP ACGFS ACHSB ACHXU ACIGE ACIPQ ACIWK ACKNC ACMDZ ACMLO ACOKC ACPRK ACSNA ACTTH ACVWB ACWMK ADHHG ADHIR ADINQ ADKPE ADMDM ADRFC ADURQ ADYFF ADZKW AEBTG AEFTE AEGNC AEJHL AEJRE AEKMD AENEX AEOHA AEPYU AESTI AETLH AEVTX AEXYK AFKRA AFLOW AFRAH AFUIB AFWTZ AFZKB AGAYW AGDGC AGGBP AGJBK AGMZJ AGQMX AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHMBA AHSBF AHYZX AIAKS AIIXL AILAN AIMYW AINHJ AITGF AJBLW AJDOV AJRNO AJZVZ AKQUC ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMYQR ARAPS ARMRJ ASPBG ATCPS AVWKF AXYYD AZFZN B-. BA0 BBAFP BBNVY BDATZ BENPR BGLVJ BGNMA BHPHI BKSAR BPHCQ BVXVI CAG CCEZO CDYEO CEKLB CHBEP COF CQIGP CS3 CSCUP CW9 D1I D1J D1K DIK DNIVK DU5 E3Z EBLON EBS EIOEI EJD ESBYG F5P FA0 FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC FYUFA G-Y G-Z GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 H13 HCIFZ HF~ HG6 HH5 HLICF HMJXF HRMNR HVGLF HYE HZ~ IHE IPNFZ IXD I~X I~Z J-C JBSCW JZLTJ K6- KB. KDC KOV L6V LK5 LK8 LLZTM M0K M1P M4Y M7P M7R M7S MA- N2Q NB0 NQJWS NU0 O9- O9J OK1 OVD P62 PATMY PCBAR PDBOC PF0 PQEST PQQKQ PQUKI PROAC PSQYO PT4 PTHSS PYCSY Q2X QOR QOS R89 R9I ROL RPM RPX RSV S16 S1Z S27 S3A S3B SAP SBL SCL SDH SHX SISQX SJN SJYHP SNE SNX SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TCJ TEORI TGP TR2 TSG TUC U2A U9L UG4 UGNYK UKHRP UNUBA UOJIU UTJUX UZ3 UZ4 UZ5 UZXMN VC2 VFIZW W23 W48 W91 WK8 WOQ YLTOR ZMTXR ZOVNA ~A9 ~WA -SA -S~ AACDK AAHBH AAJBT AAPKM AASML AATNV AAYXX AAYZH ABAKF ABBRH ABDBE ABFSG ABJNI ABQSL ABTKH ACAOD ACDTI ACMFV ACPIV ACSTC ACZOJ ADHKG ADTPH AEFQL AEMSY AESKC AEVLU AEZWR AFDZB AFHIU AGQEE AGQPQ AGRTI AHPBZ AHWEU AIGIU AIXLP ALIPV AMXSW AOCGG ATHPR AYFIA BSONS CAJEA CCPQU CITATION DDRTE DPUIP HMCUK IKXTQ IWAJR NPVJJ PHGZM PHGZT Q-- SNPRN SOHCF U1G U5K AAXDM CGR CUY CVF ECM EIF NPM 7QO 7QP 7TK 8FD FR3 K9. P64 PJZUB PPXIY PQGLB PUEGO 7X8 4A8 PMFND PSX 5PM |
ID | FETCH-LOGICAL-c4273-d8a09b60881a2f46d0be2f425dc6489cf3179f4a6d35b3c42e08340e4263dc873 |
ISSN | 1673-1581 |
IngestDate | Thu Aug 21 18:20:12 EDT 2025 Thu May 29 04:06:15 EDT 2025 Fri Sep 05 03:21:23 EDT 2025 Fri Sep 05 02:16:25 EDT 2025 Wed Aug 13 03:41:32 EDT 2025 Wed Feb 19 01:40:56 EST 2025 Tue Jul 01 04:06:18 EDT 2025 Thu Apr 24 23:04:38 EDT 2025 Fri Nov 25 17:04:10 EST 2022 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | Conductivity Magnetic Resonance Electrical Impedance Tomography Ischemic stroke Current density imaging Acute cerebral stroke Hemorrhagic stroke |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c4273-d8a09b60881a2f46d0be2f425dc6489cf3179f4a6d35b3c42e08340e4263dc873 |
Notes | R445 33-1356/Q R816.1 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | https://link.springer.com/content/pdf/10.1631/jzus.2005.B0438.pdf |
PMID | 15822161 |
PQID | 2701552585 |
PQPubID | 326286 |
PageCount | 8 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_1389764 wanfang_journals_zjdxxbb_e200505023 proquest_miscellaneous_67725842 proquest_miscellaneous_19731223 proquest_journals_2701552585 pubmed_primary_15822161 crossref_citationtrail_10_1631_jzus_2005_B0438 crossref_primary_10_1631_jzus_2005_B0438 chongqing_backfile_15480299 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2005-May |
PublicationDateYYYYMMDD | 2005-05-01 |
PublicationDate_xml | – month: 05 year: 2005 text: 2005-May |
PublicationDecade | 2000 |
PublicationPlace | China |
PublicationPlace_xml | – name: China – name: Hangzhou |
PublicationTitle | Journal of Zhejiang University. B. Science |
PublicationTitleAlternate | Journal of Zhejiang University Science |
PublicationTitle_FL | JOURNAL OF ZHEJIANG UNIVERSITY SCIENCE |
PublicationYear | 2005 |
Publisher | Springer Nature B.V School of Electrical Engineering, Zhejiang University, Hangzhou 310027, China%Department of Biomedical Engineering, University of Minnesota, MN, USA Zhejiang University Press |
Publisher_xml | – name: Springer Nature B.V – name: School of Electrical Engineering, Zhejiang University, Hangzhou 310027, China%Department of Biomedical Engineering, University of Minnesota, MN, USA – name: Zhejiang University Press |
References | O. Kwon (65438_CR18) 2002; 49 H.C. Burger (65438_CR6) 1943; 114 K.G. Boone (65438_CR5) 1997; 21 G.C. Scott (65438_CR22) 1991; 10 65438_CR3 L.A. Geddes (65438_CR10) 1967; 5 G.W. Albers (65438_CR1) 1998; 114 Y.Z. İder (65438_CR15) 1998; 6 M.T. Clay (65438_CR7) 2002; 21 D.S. Holder (65438_CR13) 1999; 873 K. Boone (65438_CR4) 1994; 15 M. Reimann (65438_CR20) 2000; 172 H.S. Khang (65438_CR17) 2002; 21 J.H. Hansen (65438_CR11) 1989; 108 P. Pešikan (65438_CR19) 1990; 39 Y.Z. İder (65438_CR16) 2003; 24 C.M. Towers (65438_CR23) 2000; 21 D.S. Holder (65438_CR12) 1992; 13 R.J. Sadleir (65438_CR21) 2001; 48 B.M. Eyüboĝlu (65438_CR8) 1998; 6 S.B. Baumann (65438_CR2) 1997; 44 Y.Z. İder (65438_CR14) 1997; 16 65438_CR9 6068939 - Med Biol Eng. 1967 May;5(3):271-93 18222838 - IEEE Trans Med Imaging. 1991;10(3):362-74 17271291 - Conf Proc IEEE Eng Med Biol Soc. 2004;6:4443-6 7415848 - Acta Physiol Scand. 1980 Apr;108(4):355-65 12166867 - IEEE Trans Med Imaging. 2002 Jun;21(6):695-702 9429132 - J Med Eng Technol. 1997 Nov-Dec;21(6):201-32 9368117 - IEEE Trans Med Imaging. 1997 Oct;16(5):617-22 11322536 - IEEE Trans Biomed Eng. 2001 Apr;48(4):484-91 11013608 - Rofo. 2000 Aug;172(8):675-9 1563222 - Clin Phys Physiol Meas. 1992 Feb;13(1):63-75 10720007 - Physiol Meas. 2000 Feb;21(1):119-24 10372187 - Ann N Y Acad Sci. 1999 Apr 20;873:512-9 9822071 - Chest. 1998 Nov;114(5 Suppl):683S-698S 12812441 - Physiol Meas. 2003 May;24(2):591-604 12166859 - IEEE Trans Med Imaging. 2002 Jun;21(6):629-37 12066883 - IEEE Trans Biomed Eng. 2002 Feb;49(2):160-7 8087042 - Physiol Meas. 1994 May;15 Suppl 2a:A189-98 9216137 - IEEE Trans Biomed Eng. 1997 Mar;44(3):220-3 |
References_xml | – volume: 15 start-page: A189 issue: 6 year: 1994 ident: 65438_CR4 publication-title: Physiol Meas doi: 10.1088/0967-3334/15/2A/024 – volume: 172 start-page: 675 issue: 8 year: 2000 ident: 65438_CR20 publication-title: Rofo. doi: 10.1055/s-2000-7170 – volume: 21 start-page: 629 issue: 6 year: 2002 ident: 65438_CR7 publication-title: IEEE Transactions on Medical Imaging doi: 10.1109/TMI.2002.800572 – volume: 21 start-page: 119 year: 2000 ident: 65438_CR23 publication-title: Physiol Meas doi: 10.1088/0967-3334/21/1/315 – volume: 5 start-page: 271 year: 1967 ident: 65438_CR10 publication-title: Med. Biol. Eng doi: 10.1007/BF02474537 – volume: 21 start-page: 695 issue: 6 year: 2002 ident: 65438_CR17 publication-title: IEEE Transactions on Medical Imaging doi: 10.1109/TMI.2002.800604 – volume: 48 start-page: 484 issue: 4 year: 2001 ident: 65438_CR21 publication-title: IEEE Transactions on Biomedical Engineering doi: 10.1109/10.915715 – volume: 6 start-page: 201 issue: 3 year: 1998 ident: 65438_CR8 publication-title: ELEKTRIK – volume: 10 start-page: 362 issue: 3 year: 1991 ident: 65438_CR22 publication-title: IEEE Transactions on Medical Imaging doi: 10.1109/42.97586 – volume: 21 start-page: 201 issue: 6 year: 1997 ident: 65438_CR5 publication-title: Medical Engineering Technology doi: 10.3109/03091909709070013 – volume: 114 start-page: 683S year: 1998 ident: 65438_CR1 publication-title: Chest doi: 10.1378/chest.114.5_Supplement.683S – volume: 13 start-page: 63 year: 1992 ident: 65438_CR12 publication-title: Clin. Phys. Physiol. Meas doi: 10.1088/0143-0815/13/1/006 – volume: 16 start-page: 617 issue: 5 year: 1997 ident: 65438_CR14 publication-title: IEEE Transactions on Medical Imaging doi: 10.1109/42.640752 – volume: 6 start-page: 215 issue: 3 year: 1998 ident: 65438_CR15 publication-title: ELEKTRIK – volume: 873 start-page: 512 year: 1999 ident: 65438_CR13 publication-title: Proc NY Acad Sci doi: 10.1111/j.1749-6632.1999.tb09500.x – volume: 114 start-page: 584 year: 1943 ident: 65438_CR6 publication-title: Acta Med. Scand doi: 10.1111/j.0954-6820.1943.tb11253.x – ident: 65438_CR9 – volume: 108 start-page: 355 year: 1989 ident: 65438_CR11 publication-title: Acta. Physiol. Scand doi: 10.1111/j.1748-1716.1980.tb06544.x – volume: 24 start-page: 591 year: 2003 ident: 65438_CR16 publication-title: Physiol. Meas. doi: 10.1088/0967-3334/24/2/368 – volume: 49 start-page: 160 issue: 2 year: 2002 ident: 65438_CR18 publication-title: IEEE Transactions on Biomedical Engineering doi: 10.1109/10.979355 – volume: 39 start-page: 1048 issue: 6 year: 1990 ident: 65438_CR19 publication-title: IEEE Trans. Instrumentation and Measurement doi: 10.1109/19.65824 – volume: 44 start-page: 220 year: 1997 ident: 65438_CR2 publication-title: IEEE Transactions on Biomedical Engineering doi: 10.1109/10.554770 – ident: 65438_CR3 doi: 10.1109/IEMBS.1996.651975 – reference: 11013608 - Rofo. 2000 Aug;172(8):675-9 – reference: 10720007 - Physiol Meas. 2000 Feb;21(1):119-24 – reference: 7415848 - Acta Physiol Scand. 1980 Apr;108(4):355-65 – reference: 18222838 - IEEE Trans Med Imaging. 1991;10(3):362-74 – reference: 10372187 - Ann N Y Acad Sci. 1999 Apr 20;873:512-9 – reference: 9368117 - IEEE Trans Med Imaging. 1997 Oct;16(5):617-22 – reference: 12166867 - IEEE Trans Med Imaging. 2002 Jun;21(6):695-702 – reference: 9429132 - J Med Eng Technol. 1997 Nov-Dec;21(6):201-32 – reference: 17271291 - Conf Proc IEEE Eng Med Biol Soc. 2004;6:4443-6 – reference: 9216137 - IEEE Trans Biomed Eng. 1997 Mar;44(3):220-3 – reference: 8087042 - Physiol Meas. 1994 May;15 Suppl 2a:A189-98 – reference: 12166859 - IEEE Trans Med Imaging. 2002 Jun;21(6):629-37 – reference: 9822071 - Chest. 1998 Nov;114(5 Suppl):683S-698S – reference: 6068939 - Med Biol Eng. 1967 May;5(3):271-93 – reference: 11322536 - IEEE Trans Biomed Eng. 2001 Apr;48(4):484-91 – reference: 12066883 - IEEE Trans Biomed Eng. 2002 Feb;49(2):160-7 – reference: 12812441 - Physiol Meas. 2003 May;24(2):591-604 – reference: 1563222 - Clin Phys Physiol Meas. 1992 Feb;13(1):63-75 |
SSID | ssj0044076 |
Score | 1.7037954 |
Snippet | We have developed a new three dimensional (3-D) conductivity imaging approach and have used it to detect human brain conductivity changes corresponding to... TM153; We have developed a new three dimensional (3-D) conductivity imaging approach and have used it to detect human brain conductivity changes corresponding... |
SourceID | pubmedcentral wanfang proquest pubmed crossref chongqing |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 438 |
SubjectTerms | 3D磁共振电阻抗X线断层摄影术 Algorithms Biotechnology Brain Ischemia - pathology Computer Simulation Conductivity Correlation coefficient Correlation coefficients Electric Impedance Electrical impedance Hemorrhage Hemorrhage - pathology Humans Imaging, Three-Dimensional Impedance Ischemia Iterative methods Magnetic resonance Magnetic Resonance Imaging Medical imaging Neuroimaging Radio signals Resonance Signal to noise ratio Stroke Stroke - diagnosis Stroke - pathology Tomography Tomography - instrumentation Tomography - methods White noise 传导性 模拟技术 电流密度 |
Title | Use of 3-D magnetic resonance electrical impedance tomography in detecting human cerebral stroke: a simulation study |
URI | http://lib.cqvip.com/qk/86281A/20055/15480299.html https://www.ncbi.nlm.nih.gov/pubmed/15822161 https://www.proquest.com/docview/2701552585 https://www.proquest.com/docview/19731223 https://www.proquest.com/docview/67725842 https://d.wanfangdata.com.cn/periodical/zjdxxbb-e200505023 https://pubmed.ncbi.nlm.nih.gov/PMC1389764 |
Volume | 6 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELe6TZN4QXwvbAxL8IA0pTQftlPeKLRMaBSEWqnaS-Q4TttBE9haMfbO_83ZTpyUMgS8pJXz5eR-Od-dz79D6GnmcU4l8V2P-tINU0ZcDsOKC4pPZlHqRwlVC4XfDenxOHw7IZNW60cja2m1TNri6rfrSv5HqtAGclWrZP9Bsvai0AD_Qb6wBQnD9q9kPDaB-MB9fbTg01waPmZlXKvP1VS40UKYg3Gc6sZlsShJqk0erJpDUNECU6tPyHM1kayXkCgqTr0S-mK-KGt8NchoN-3Z05k8A6xNG7ke7aNeu9IeNtGHF0fDVWEjOzOeuyYIezpb1ZFZjbuSFbwKSpA6BXAtKKkyrtU8iF00o3UsZYHrEVOppS1NGzhWrsdMTZtKMdMG_khDyYaGD6Ycr0NDR7kxFNBADwVXqwsTOet17HlN0u3h-3gwPjmJR_3JaAvt-Iyp2f6dXn_44WM1pIfg9eplalXPS44ouMXzX26gKDpmRT79Cs-_bups-C-babi733iegaAaFs7oFrpZihK_NDi7jVoyv4N2TbHS73fREtCGiwwD2nCFNmzRhmu0YYs2XKMNz3Ns0YY12nCFNmzQ9gJzXGMNa6zdQ-NBf_Tq2C1rdrgiBEvYTSPe6SYUxi6P-1lI004i4dcnqaBh1BUZ2KvdLOQ0DUgSwDkSfICwI1XdgFRELLiPtvMil3sIE_A9aCAEST0RiiCLmIDBhssgo10q_cRB-_ZVg80nPikms1i54B2wsRzUrl5-LEq6e1V15XOs3F6QXKwkp6qwklhLzkHP7AlfDNPL9YceVNKMS3UAu5mmMwT320GP7W5Q1moGjueygEt4qlAcGOTXH0HB2wWfwHfQAwOOui8EbHnwzxzE1mBjD1BE8et78vlME8arZARGQwc9KQFW9_rqLL28TJJY-rqmJVjwD__8cPvoRv3BH6Dt5flKPgK7fJkcoi02YbCNBm8Oyy_oJ-a46iU |
linkProvider | ProQuest |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Use+of+3-D+magnetic+resonance+electrical+impedance+tomography+in+detecting+human+cerebral+stroke%3A+a+simulation+study&rft.jtitle=Journal+of+Zhejiang+University.+B.+Science&rft.au=Gao+Nuo&rft.au=Shan-an%2C+Zhu&rft.au=He%2C+Bin&rft.date=2005-05-01&rft.pub=Springer+Nature+B.V&rft.issn=1673-1581&rft.eissn=1862-1783&rft.volume=6&rft.issue=5&rft.spage=438&rft.epage=445&rft_id=info:doi/10.1631%2Fjzus.2005.B0438&rft.externalDBID=NO_FULL_TEXT |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F86281A%2F86281A.jpg http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fzjdxxbb-e%2Fzjdxxbb-e.jpg |