Tunable engineering hollow carbon nanomaterial served as an excellent catalyst for oxygen reduction reaction and hydrogen evolution reaction

[Display omitted] Fe and N functionalized hollow carbon spheres (Fe/N-HCS) with hierarchically porous structure are constructed. Remarkably, it is discovered that the pyrolysis temperature effects the chemical composition intensively. At 800 °C, only graphitic-N and oxidized-N are formed for all as-...

Full description

Saved in:
Bibliographic Details
Published inJournal of colloid and interface science Vol. 544; pp. 178 - 187
Main Authors Song, Kaixu, Shi, Bo, Song, Dandan, Zhang, Qiaoling, He, Xingquan, Dou, Zhiyu, Hu, Xiaoli, Cui, Lili
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 15.05.2019
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:[Display omitted] Fe and N functionalized hollow carbon spheres (Fe/N-HCS) with hierarchically porous structure are constructed. Remarkably, it is discovered that the pyrolysis temperature effects the chemical composition intensively. At 800 °C, only graphitic-N and oxidized-N are formed for all as-prepared samples. The surface area and pores can be precisely tuned, the surface area of all Fe/N-HCS samples is more than 500  m2 g−1 benefiting from the porous hollow structure. Thus, the optimized Fe/N-HCS exhibits excellent oxygen reduction reaction performance in term of onset potential (1.00 V vs. RHE), half-wave potential (0.87 V vs. RHE), good stability as well as methanol tolerance for oxygen reduction reaction, even surpassing the Pt in alkaline condition and more competitive in acidic condition; Furthermore, the optimized Fe/N-HCS displays better hydrogen evolution reaction activity in acidic condition with onset overpotential of 40 mV and overpotential to deliver 10 mA cm−2 at 170 mV, indicating better active. It is found that Fe/N-HCS improve the hydrogen evolution reaction activity after electrodeposition trace quantity of Pt, which shows 170 mV of overpotential to deliver 100 mA cm−2. X-ray photoelectron spectroscopy result indicates the loading of Pt is roughly 0.11 at%, thus, the improved performance is basically due to the synergistic effect between Pt and Fe/N-HCS.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0021-9797
1095-7103
1095-7103
DOI:10.1016/j.jcis.2019.02.085