Minimizing finite sums with the stochastic average gradient

We analyze the stochastic average gradient (SAG) method for optimizing the sum of a finite number of smooth convex functions. Like stochastic gradient (SG) methods, the SAG method’s iteration cost is independent of the number of terms in the sum. However, by incorporating a memory of previous gradie...

Full description

Saved in:
Bibliographic Details
Published inMathematical programming Vol. 162; no. 1-2; pp. 83 - 112
Main Authors Schmidt, Mark, Le Roux, Nicolas, Bach, Francis
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.03.2017
Springer Nature B.V
Springer Verlag
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:We analyze the stochastic average gradient (SAG) method for optimizing the sum of a finite number of smooth convex functions. Like stochastic gradient (SG) methods, the SAG method’s iteration cost is independent of the number of terms in the sum. However, by incorporating a memory of previous gradient values the SAG method achieves a faster convergence rate than black-box SG methods. The convergence rate is improved from O ( 1 / k ) to O (1 /  k ) in general, and when the sum is strongly-convex the convergence rate is improved from the sub-linear O (1 /  k ) to a linear convergence rate of the form O ( ρ k ) for ρ < 1 . Further, in many cases the convergence rate of the new method is also faster than black-box deterministic gradient methods, in terms of the number of gradient evaluations. This extends our earlier work Le Roux et al. (Adv Neural Inf Process Syst, 2012 ), which only lead to a faster rate for well-conditioned strongly-convex problems. Numerical experiments indicate that the new algorithm often dramatically outperforms existing SG and deterministic gradient methods, and that the performance may be further improved through the use of non-uniform sampling strategies.
Bibliography:SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
ISSN:0025-5610
1436-4646
DOI:10.1007/s10107-016-1030-6