Molecular cloning and functional characterization of porcine CCL28: Possible involvement in homing of IgA antibody secreting cells into the mammary gland
Constitutive expression of chemokines by epithelial cells controls the recruitment and the localization of specialized lymphocytes. Mucosae associated-epithelial chemokine (MEC/CCL28) cloned from porcine salivary gland and colon tissues consisted of an open reading frame (ORF) of 384-bp coding for 1...
Saved in:
Published in | Molecular immunology Vol. 45; no. 1; pp. 271 - 277 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
Elsevier Ltd
01.01.2008
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Constitutive expression of chemokines by epithelial cells controls the recruitment and the localization of specialized lymphocytes. Mucosae associated-epithelial chemokine (MEC/CCL28) cloned from porcine salivary gland and colon tissues consisted of an open reading frame (ORF) of 384-bp coding for 127 amino-acids protein with 22 residues signal sequence. The resulting mature protein is composed of 105 aa with 4 conserved cysteine residues. CCL28 shows aa sequence identity with rat, mouse, macaque and human ranging from 67 to 87%. Using plasmid pQETris-CCL28 injection, a rabbit anti-serum was produced and showed a specific reactivity towards non-reduced form of CCL28 recombinant protein. Comparatively to CCL25 mRNA expression, RT-PCR analysis showed that CCL28 is expressed in various mucosal tissues, but most abundantly in nasal mucosa, colon, salivary and mammary gland (MG). Immunohistochemical analysis showed that CCL28 is produced by epithelial cells of these tissues suggesting that this chemokine can play an important role by linking homing mechanisms between the gut, nasal mucosa and MG. In addition, mRNA of CCL28 was up-regulated in the MG at late gestation and during lactation but was not found at weaning. CCL28 protein was excreted in sow's milk sustaining that this chemokine plays a key role of IgA-ASCs accumulation in this tissue and thus controls the passive transfer level of IgA antibodies from mother to infant. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 ObjectType-Article-2 ObjectType-Feature-1 |
ISSN: | 0161-5890 1872-9142 |
DOI: | 10.1016/j.molimm.2007.04.026 |