Quantum spinning photonic circulator

We propose a scheme to realize a four-port quantum optical circulator for critical coupling of a spinning Kerr resonator to two tapered fibers. Its nonreciprocal effect arises from the Fizeau drag induced splitting of the resonance frequencies of the two counter-travelling optical modes. The transmi...

Full description

Saved in:
Bibliographic Details
Published inScientific reports Vol. 12; no. 1; p. 5844
Main Author Jing, Yu-Wei
Format Journal Article
LanguageEnglish
Published England Nature Publishing Group 07.04.2022
Nature Publishing Group UK
Nature Portfolio
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:We propose a scheme to realize a four-port quantum optical circulator for critical coupling of a spinning Kerr resonator to two tapered fibers. Its nonreciprocal effect arises from the Fizeau drag induced splitting of the resonance frequencies of the two counter-travelling optical modes. The transmitted photons exhibit direction dependent quantum correlations and nonreciprocal photon blockade occurs for photons transferred between the two fibers. Moreover, the quantum optical circulator is robust against the back scattering induced by intermodal coupling between counter-travelling optical modes. The present quantum optical circulator has significant potential as an elementary cell in chiral quantum information processing without magnetic field.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2045-2322
2045-2322
DOI:10.1038/s41598-022-09626-7