Simultaneous determination of hydroquinone, resorcinol, phenol, m-cresol and p-cresol in untreated air samples using spectrofluorimetry and a custom multiple linear regression-successive projection algorithm

In this study, a novel, simple, and efficient spectrofluorimetric method to determine directly and simultaneously five phenolic compounds (hydroquinone, resorcinol, phenol, m-cresol and p-cresol) in air samples is presented. For this purpose, variable selection by the successive projections algorith...

Full description

Saved in:
Bibliographic Details
Published inTalanta (Oxford) Vol. 83; no. 2; pp. 320 - 323
Main Authors Pistonesi, Marcelo F., Di Nezio, María S., Centurión, María E., Lista, Adriana G., Fragoso, Wallace D., Pontes, Márcio J.C., Araújo, Mário C.U., Band, Beatriz S. Fernández
Format Journal Article
LanguageEnglish
Published Amsterdam Elsevier B.V 15.12.2010
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:In this study, a novel, simple, and efficient spectrofluorimetric method to determine directly and simultaneously five phenolic compounds (hydroquinone, resorcinol, phenol, m-cresol and p-cresol) in air samples is presented. For this purpose, variable selection by the successive projections algorithm (SPA) is used in order to obtain simple multiple linear regression (MLR) models based on a small subset of wavelengths. For comparison, partial least square (PLS) regression is also employed in full-spectrum. The concentrations of the calibration matrix ranged from 0.02 to 0.2 mg L −1 for hydroquinone, from 0.05 to 0.6 mg L −1 for resorcinol, and from 0.05 to 0.4 mg L −1 for phenol, m-cresol and p-cresol; incidentally, such ranges are in accordance with the Argentinean environmental legislation. To verify the accuracy of the proposed method a recovery study on real air samples of smoking environment was carried out with satisfactory results (94–104%). The advantage of the proposed method is that it requires only spectrofluorimetric measurements of samples and chemometric modeling for simultaneous determination of five phenols. With it, air is simply sampled and no pre-treatment sample is needed (i.e., separation steps and derivatization reagents are avoided) that means a great saving of time.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0039-9140
1873-3573
DOI:10.1016/j.talanta.2010.09.027