Propagation network of tailings dam failure risk and the identification of key hazards

The tailings dam system is complex, and the dam structure changes continuously over time, which can make it difficult to identify key hazards of failure and characterize the accident formation process. To solve the above problems, based on complex network theory, the paper uses the identified hazard...

Full description

Saved in:
Bibliographic Details
Published inScientific reports Vol. 12; no. 1; p. 5580
Main Authors Zhen, Zhixin, Wu, Xu, Ma, Bo, Zhao, Huijie, Zhang, Ying
Format Journal Article
LanguageEnglish
Published England Nature Publishing Group 02.04.2022
Nature Publishing Group UK
Nature Portfolio
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The tailings dam system is complex, and the dam structure changes continuously over time, which can make it difficult to identify key hazards of failure and characterize the accident formation process. To solve the above problems, based on complex network theory, the paper uses the identified hazards and the relationship between hazards to construct the propagation network of tailings dam failure risk (PNTDFR). The traditional analysis methods of network centrality usually focus on one aspect of the information of the network, while it cannot take into account to absorb the advantages of different methods, resulting in the difference between identified key nodes and real key hazards. To find the key hazards of tailing dam failure, based on the characteristics of multi-stage propagation of failure risk, the paper proposes a multi-stage collaborative hazard remediation method (MCHRM) to determine the importance of hazard nodes by absorbing the advantages of different centrality methods under different hazard remediation (deletion) ratios. The paper applies the above methods to Feijão Dam I. It can be found that when the priority remediation range is increased to 45%, the key hazards obtained by the MCHRM will cover all the causes of accidents proposed by the Dam I failure investigation expert group. Besides, the paper compares the monitoring data, daily inspection results and safety evaluation information of key hazards with the 'Grading standards of hazard indicators', and obtains the formation process of the Dam I failure and 30 key hazards in trigger state.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2045-2322
2045-2322
DOI:10.1038/s41598-022-08282-1