Myelomonocytic Skewing In Vitro Discriminates Subgroups of Patients with Myelofibrosis with A Different Phenotype, A Different Mutational Profile and Different Prognosis

Normal hematopoietic function is maintained by a well-controlled balance of myelomonocytic, megaerythroid and lymphoid progenitor cell populations which may be skewed during pathologic conditions. Using semisolid in vitro cultures supporting the growth of myelomonocytic (CFU-GM) and erythroid (BFU-E...

Full description

Saved in:
Bibliographic Details
Published inCancers Vol. 12; no. 8; p. 2291
Main Authors Geissler, Klaus, Gisslinger, Bettina, Jäger, Eva, Jäger, Roland, Schiefer, Ana-Iris, Bogner, Edith, Fuchs, Elisabeth, Schischlik, Fiorella, Alpar, Donat, Simonitsch-Klupp, Ingrid, Kralovics, Robert, Gisslinger, Heinz
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 14.08.2020
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Normal hematopoietic function is maintained by a well-controlled balance of myelomonocytic, megaerythroid and lymphoid progenitor cell populations which may be skewed during pathologic conditions. Using semisolid in vitro cultures supporting the growth of myelomonocytic (CFU-GM) and erythroid (BFU-E) colonies, we investigated skewed differentiation towards the myelomonocytic over erythroid commitment in 81 patients with myelofibrosis (MF). MF patients had significantly increased numbers of circulating CFU-GM and BFU-E. Myelomonocytic skewing as indicated by a CFU-GM/BFU-E ratio ≥ 1 was found in 26/81 (32%) MF patients as compared to 1/98 (1%) in normal individuals. Patients with myelomonocytic skewing as compared to patients without skewing had higher white blood cell and blast cell counts, more frequent leukoerythroblastic features, but lower hemoglobin levels and platelet counts. The presence of myelomonocytic skewing was associated with a higher frequency of additional mutations, particularly in genes of the epigenetic and/or splicing machinery, and a significantly shorter survival (46 vs. 138 mo, p < 0.001). The results of this study show that the in vitro detection of myelomonocytic skewing can discriminate subgroups of patients with MF with a different phenotype, a different mutational profile and a different prognosis. Our findings may be important for the understanding and management of MF.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2072-6694
2072-6694
DOI:10.3390/cancers12082291