Investigation of Thermostressed State of Coating Formation at Electric Contact Surfacing of “Shaft” Type Parts

The forming of coating at electric contact surfacing is considered. The mathematical model of the coating formation is developed. The method of numerical recurrent solution of the finite-difference form of static equilibrium conditions of the selected elementary volume of coating is used. This model...

Full description

Saved in:
Bibliographic Details
Published inAdvances in materials science and engineering Vol. 2016; no. 2016; pp. 1 - 14
Main Authors Berezshnaya, Olena V., Kuznetsov, Valeriy D., Gribkov, Eduard P.
Format Journal Article
LanguageEnglish
Published Cairo, Egypt Hindawi Publishing Corporation 01.01.2016
Hindawi Limited
Wiley
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The forming of coating at electric contact surfacing is considered. The mathematical model of the coating formation is developed. The method of numerical recurrent solution of the finite-difference form of static equilibrium conditions of the selected elementary volume of coating is used. This model considers distribution of thermal properties and geometric parameters along the thermal deformation zone during the process of electric contact surfacing by compact material. It is found that the change of value of speed asymmetry factor leads to increasing of the friction coefficient in zone of surfacing. This provides the forming of the coating of higher quality. The limitation of the technological capabilities of equipment for electric contact surfacing is related to the size of recoverable parts and application of high electromechanical powers. The regulation of the speed asymmetry factor allows for expanding the technological capabilities of equipment for electric contact surfacing. The nomograms for determination of the stress on the roller electrode and the finite thickness of the coating as the function of the initial thickness of the compact material and the deformation degree are shown.
ISSN:1687-8434
1687-8442
DOI:10.1155/2016/6597317