Shear-induced platelet activation and platelet microparticle formation in native human blood

Shear-induced platelet activation and platelet microparticle formation are triggered in native human blood by high arterial shear or by a sudden increase in shear as introduced by a stenosis with potential consequences for collagen-induced platelet thrombus formation. Blood was drawn from healthy vo...

Full description

Saved in:
Bibliographic Details
Published inThrombosis research Vol. 92; no. 6; pp. S33 - S41
Main Authors Sakariassen, Kjell S., Holme, Pl A., Ørvim, Una, Marius Barstad, R., Solum, Nils O., Brosstad, Frank R.
Format Journal Article
LanguageEnglish
Published United States Elsevier Ltd 15.12.1998
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Shear-induced platelet activation and platelet microparticle formation are triggered in native human blood by high arterial shear or by a sudden increase in shear as introduced by a stenosis with potential consequences for collagen-induced platelet thrombus formation. Blood was drawn from healthy volunteers and directly perfused ex vivo over various well-defined eccentric stenoses. Shear-induced platelet activation was determined by using flow cytometry to assess: 1) GPIIb-IIIa activation by fluorescein isothiocyanate (FITC)-labeled Mab PAC-1; and 2) translocation of membrane aminophospholipids (procoagulant activity) by FITC-labeled Annexin V. Microparticle formation was measured by flow cytometry and FITC-labeled Mab Y2/51 directed against GPIIIa. Significant platelet activation and platelet microparticle formation were elicited when the wall shear rate reached 10,500 sec −1 for a period of 0.075 sec. Prolonged exposure to or a rapid increase in shear further enhanced activation and microparticle formation. Shear-induced platelet activation was associated with significantly increased collagen-induced platelet thrombus formation that was insensitive to aspirin ingestion. Exposure of native blood to very high shear thus activates platelets to express GPIIb-IIIa, renders the platelet membrane procoagulant and stimulates microparticle formation. These responses are associated with enhanced collagen-induced thrombus formation by prostaglandin-independent mechanisms.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0049-3848
1879-2472
DOI:10.1016/S0049-3848(98)00158-3