A novel hybrid bacteria-chemotaxis spiral-dynamic algorithm with application to modelling of flexible systems

This paper presents a novel hybrid optimisation algorithm namely HBCSD, which synergises a bacterial foraging algorithm (BFA) and spiral dynamics algorithm (SDA). The main objective of this strategy is to develop an algorithm that is capable to reach a global optimum point at the end of the final so...

Full description

Saved in:
Bibliographic Details
Published inEngineering applications of artificial intelligence Vol. 33; pp. 31 - 46
Main Authors Nasir, A.N.K., Tokhi, M.O.
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.08.2014
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:This paper presents a novel hybrid optimisation algorithm namely HBCSD, which synergises a bacterial foraging algorithm (BFA) and spiral dynamics algorithm (SDA). The main objective of this strategy is to develop an algorithm that is capable to reach a global optimum point at the end of the final solution with a faster convergence speed compared to its predecessor algorithms. The BFA is incorporated into the algorithm to act as a global search or exploration phase. The solutions from the exploration phase then feed into SDA, which acts as a local search or exploitation phase. The proposed algorithm is used in dynamic modelling of two types of flexible systems, namely a flexible robot manipulator and a twin rotor system. The results obtained show that the proposed algorithm outperforms its predecessor algorithms in terms of fitness accuracy, convergence speed, and time-domain and frequency-domain dynamic characterisation of the two flexible systems.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0952-1976
1873-6769
DOI:10.1016/j.engappai.2014.04.001