In-situ fabrication of self-supported cobalt molybdenum sulphide on carbon paper for bifunctional water electrocatalysis

The fabrication of highly efficient yet stable noble-metal-free bifunctional electrocatalysts that can simultaneously catalyse both hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) remains challenging. Herein, we employ the heterostructure coupling strategy, showcasing an aeroso...

Full description

Saved in:
Bibliographic Details
Published inHeliyon Vol. 10; no. 10; p. e31108
Main Authors Yao, Yuting, Liu, Yuhan, Shin, Juhun, Cai, Shenglin, Zhang, Xinyue, Guo, Zhengxiao, Blackman, Christopher S.
Format Journal Article
LanguageEnglish
Published England Elsevier Ltd 30.05.2024
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The fabrication of highly efficient yet stable noble-metal-free bifunctional electrocatalysts that can simultaneously catalyse both hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) remains challenging. Herein, we employ the heterostructure coupling strategy, showcasing an aerosol-assisted chemical vapour deposition (AACVD) aided synthetic approach for the in-situ growth of cobalt molybdenum sulphide nanocomposites on carbon paper (CoMoS@CP) as a bifunctional electrocatalyst. The AACVD allows the rational incorporation of Co in the Mo–S binary structure, which modulates the morphology of CoMoS@CP, resulting in enhanced HER activity (ŋ10 = 171 mV in acidic and ŋ10 = 177 mV in alkaline conditions). Furthermore, the CoS2 species in the CoMoS@CP ternary structure extends the OER capability, yielding an ŋ100 of 455 mV in 1 M KOH. Lastly, we found that the synergistic effect of the Co–Mo–S interface elevates the bifunctional performance beyond binary counterparts, achieving a low cell voltage (1.70 V at 10 mA cm−2) in overall water splitting test and outstanding catalytic stability (∼90 % performance retention after 50-/30-h continuous operation at 10 and 100 mA cm−2, respectively). This work has opened up a new methodology for the controllable synthesis of self-supported transition metal-based electrocatalysts for applications in overall water splitting.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2405-8440
2405-8440
DOI:10.1016/j.heliyon.2024.e31108