The effects of low temperature buffer layer on the growth of pure Ge on Si(001)

We investigated the effects of low temperature (LT) Ge buffer layers on the two-step Ge growth by varying the thickness of buffer layers. Whereas the two-step Ge layers using thin (< 40 nm) Ge buffer layers were roughened due to the formation of SiGe alloy, pure and flat Ge layers were grown by u...

Full description

Saved in:
Bibliographic Details
Published inThin solid films Vol. 518; no. 22; pp. 6496 - 6499
Main Authors Shin, Keun Wook, Kim, Hyun-Woo, Kim, Jungsub, Yang, Changjae, Lee, Sangsoo, Yoon, Euijoon
Format Journal Article
LanguageEnglish
Published Amsterdam Elsevier B.V 01.09.2010
Elsevier
Subjects
Online AccessGet full text
ISSN0040-6090
1879-2731
DOI10.1016/j.tsf.2010.03.148

Cover

Loading…
Abstract We investigated the effects of low temperature (LT) Ge buffer layers on the two-step Ge growth by varying the thickness of buffer layers. Whereas the two-step Ge layers using thin (< 40 nm) Ge buffer layers were roughened due to the formation of SiGe alloy, pure and flat Ge layers were grown by using thick (> 50 nm) LT Ge buffer layers. The lowest threading dislocation density of 1.2 × 10 6 cm − 2 was obtained when 80-nm-thick LT Ge buffer layer was used. We concluded that the minimum thickness of buffer layer was required to grow uniform two-step Ge layers on Si and its quality was subject to the thickness of buffer layer.
AbstractList We investigated the effects of low temperature (LT) Ge buffer layers on the two-step Ge growth by varying the thickness of buffer layers. Whereas the two-step Ge layers using thin (< 40 nm) Ge buffer layers were roughened due to the formation of SiGe alloy, pure and flat Ge layers were grown by using thick (> 50 nm) LT Ge buffer layers. The lowest threading dislocation density of 1.2 × 10 6 cm − 2 was obtained when 80-nm-thick LT Ge buffer layer was used. We concluded that the minimum thickness of buffer layer was required to grow uniform two-step Ge layers on Si and its quality was subject to the thickness of buffer layer.
We investigated the effects of low temperature (LT) Ge buffer layers on the two-step Ge growth by varying the thickness of buffer layers. Whereas the two-step Ge layers using thin (<40nm) Ge buffer layers were roughened due to the formation of SiGe alloy, pure and flat Ge layers were grown by using thick (>50nm) LT Ge buffer layers. The lowest threading dislocation density of 1.2A-106 cma 2 was obtained when 80-nm-thick LT Ge buffer layer was used. We concluded that the minimum thickness of buffer layer was required to grow uniform two-step Ge layers on Si and its quality was subject to the thickness of buffer layer.
Author Kim, Jungsub
Shin, Keun Wook
Kim, Hyun-Woo
Yang, Changjae
Yoon, Euijoon
Lee, Sangsoo
Author_xml – sequence: 1
  givenname: Keun Wook
  surname: Shin
  fullname: Shin, Keun Wook
  organization: Department of Materials Science and Engineering, Seoul National University, Seoul 151-744, Republic of Korea
– sequence: 2
  givenname: Hyun-Woo
  surname: Kim
  fullname: Kim, Hyun-Woo
  organization: Department of Materials Science and Engineering, Seoul National University, Seoul 151-744, Republic of Korea
– sequence: 3
  givenname: Jungsub
  surname: Kim
  fullname: Kim, Jungsub
  organization: Department of Materials Science and Engineering, Seoul National University, Seoul 151-744, Republic of Korea
– sequence: 4
  givenname: Changjae
  surname: Yang
  fullname: Yang, Changjae
  organization: Department of Materials Science and Engineering, Seoul National University, Seoul 151-744, Republic of Korea
– sequence: 5
  givenname: Sangsoo
  surname: Lee
  fullname: Lee, Sangsoo
  organization: Department of Materials Science and Engineering, Seoul National University, Seoul 151-744, Republic of Korea
– sequence: 6
  givenname: Euijoon
  surname: Yoon
  fullname: Yoon, Euijoon
  email: eyoon@snu.ac.kr
  organization: Department of Materials Science and Engineering, Seoul National University, Seoul 151-744, Republic of Korea
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=23264827$$DView record in Pascal Francis
BookMark eNp9kU1LxDAURYOM4Dj6A9x1I-ii9SX9SIsrGfwCYRaO65DEV83QaWqSOvjvTRnduHCTEN65l8fJMZn1tkdCzihkFGh1tcmCbzMG8Q15Rov6gMxpzZuU8ZzOyByggLSCBo7IsfcbAKCM5XOyWr9jgm2LOvjEtklnd0nA7YBOhtFhosY4c0knv-Jp-yRE_M3ZXXif6GFC7nEaPJuL2Hl5Qg5b2Xk8_bkX5OXudr18SJ9W94_Lm6dUF6wKqWRQFrVUuqEcpARel6gVVo1q4mKKUVmj4oXiTOUFlE1DAcuyzTlWUJWqyRfkYt87OPsxog9ia7zGrpM92tELCozVvISKRvT8B5Vey651stfGi8GZrXRfguWsKuqoaUH4ntPOeu-wFdoEGYztg5Omi5ViUi02IqoWk2oBuYiqY5L-Sf6W_5e53mcwWvo06ITXBnuNr8bFzxCv1vyT_gYXepX0
CODEN THSFAP
CitedBy_id crossref_primary_10_3938_jkps_72_633
crossref_primary_10_1063_5_0225536
crossref_primary_10_1016_j_solmat_2018_11_035
crossref_primary_10_1016_j_sse_2016_07_027
crossref_primary_10_1016_j_tsf_2015_08_044
crossref_primary_10_1063_1_3623757
crossref_primary_10_7567_JJAP_55_061302
crossref_primary_10_1016_j_mssp_2014_01_038
crossref_primary_10_1016_j_optmat_2024_116222
crossref_primary_10_1016_j_jcrysgro_2012_09_012
crossref_primary_10_7567_JJAP_52_08JC09
crossref_primary_10_3390_coatings9120823
crossref_primary_10_1016_j_jallcom_2014_12_122
crossref_primary_10_1016_j_jcrysgro_2016_01_005
crossref_primary_10_7567_JJAP_51_055502
crossref_primary_10_1063_1_4896788
crossref_primary_10_1143_JJAP_51_055502
crossref_primary_10_1016_j_actamat_2012_09_082
crossref_primary_10_1088_0268_1242_27_4_043001
crossref_primary_10_3390_cryst12040462
crossref_primary_10_1088_1674_1056_21_1_017805
crossref_primary_10_1007_s13391_019_00179_y
crossref_primary_10_3390_nano11040928
Cites_doi 10.1063/1.105351
10.1063/1.105636
10.1063/1.1375801
10.1063/1.110919
10.1016/S0040-6090(98)01317-0
10.1063/1.107569
10.1149/1.2404374
10.1016/j.tsf.2009.01.169
10.1016/j.jcrysgro.2008.09.138
10.1063/1.2734507
10.1063/1.2921835
10.1016/j.mssp.2006.09.003
10.1109/16.792009
10.1063/1.121162
10.1143/JJAP.42.L517
10.1109/JQE.2006.890395
10.1063/1.1610243
10.1016/j.jcrysgro.2004.10.042
10.1063/1.125187
ContentType Journal Article
Copyright 2010 Elsevier B.V.
2015 INIST-CNRS
Copyright_xml – notice: 2010 Elsevier B.V.
– notice: 2015 INIST-CNRS
DBID AAYXX
CITATION
IQODW
7SR
7U5
8BQ
8FD
JG9
L7M
DOI 10.1016/j.tsf.2010.03.148
DatabaseName CrossRef
Pascal-Francis
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList
Materials Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1879-2731
EndPage 6499
ExternalDocumentID 23264827
10_1016_j_tsf_2010_03_148
S0040609010004773
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
123
1B1
1RT
1~.
1~5
29Q
4.4
457
4G.
5VS
6TJ
7-5
71M
8P~
9JN
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYJJ
ABFNM
ABFRF
ABJNI
ABMAC
ABNEU
ABXDB
ABXRA
ABYKQ
ACBEA
ACDAQ
ACFVG
ACGFO
ACGFS
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
AEBSH
AEFWE
AEKER
AENEX
AEZYN
AFFNX
AFKWA
AFRZQ
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AIVDX
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BBWZM
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
G8K
GBLVA
HMV
HVGLF
HX~
HZ~
IHE
J1W
KOM
M24
M38
M41
MAGPM
MO0
N9A
NDZJH
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SMS
SPC
SPCBC
SPD
SPG
SSM
SSQ
SSZ
T5K
TWZ
VOH
WH7
WUQ
XFK
ZMT
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
EFKBS
IQODW
7SR
7U5
8BQ
8FD
JG9
L7M
ID FETCH-LOGICAL-c426t-a20548abc9170aa0785ecbe69b9012b21a8eb74b72b34059910e55f37e6065b93
IEDL.DBID AIKHN
ISSN 0040-6090
IngestDate Fri Jul 11 10:14:39 EDT 2025
Mon Jul 21 09:11:11 EDT 2025
Thu Apr 24 23:09:27 EDT 2025
Tue Jul 01 03:51:53 EDT 2025
Fri Feb 23 02:31:20 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 22
Keywords Thickness
Germanium
UHVCVD
Two step growth
Low temperature
Buffer layer
Dislocation density
Threading dislocation
Ge-Si alloys
Growth mechanism
Silicon
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c426t-a20548abc9170aa0785ecbe69b9012b21a8eb74b72b34059910e55f37e6065b93
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
PQID 1022875061
PQPubID 23500
PageCount 4
ParticipantIDs proquest_miscellaneous_1022875061
pascalfrancis_primary_23264827
crossref_citationtrail_10_1016_j_tsf_2010_03_148
crossref_primary_10_1016_j_tsf_2010_03_148
elsevier_sciencedirect_doi_10_1016_j_tsf_2010_03_148
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2010-09-01
PublicationDateYYYYMMDD 2010-09-01
PublicationDate_xml – month: 09
  year: 2010
  text: 2010-09-01
  day: 01
PublicationDecade 2010
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationTitle Thin solid films
PublicationYear 2010
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References Fitzgerald, Xie, Green, Brasen, Kortan, Michel, Mii, Weir (bib6) 1991; 59
Yamaguchii, Luque (bib1) 1999; 46
Hsu, Fitzgerald, Xie, Silverman, Cardillo (bib7) 1992; 61
Luo, Wan, Forrest, Liu, Goorsky, Wang (bib19) 2001; 89
Choi, Harris, Kim, McIntyre, Cagnon, Stemmer (bib4) 2009; 311
Sakai, Tatsumi (bib15) 1994; 64
Kim, Shin, Lee, Yoon (bib11) 2009; 517
Luan, Lim, Lee, Chen, Sandland, Wada, Kimerling (bib13) 1999; 75
Cunningham, Chu, Akbar (bib14) 1991; 59
Secco d' Aragona (bib17) 1972; 119
Kasper, Lyutovich, Bauer, Oehme (bib16) 1998; 336
Currie, Samavedam, Langdo, Leitz, Fitzgerald (bib8) 1998; 72
Hartmann, Damlencourt, Bogumilowicz, Holliger, Rolland, Billon (bib12) 2005; 274
King, Law, Edmondson, Fetzer, Kinsey, Yoon, Sherif, Karam (bib2) 2007; 90
LUO, YANG, CHANG, CHANG, CHAO (bib9) 2003; 42
Andre, Boeckl, Leitz, Curie, Langdo, Fitzgerald, Ringel (bib3) 2003; 94
Marchionna, Virtuani, Acciarri, Isella, von Kaenel (bib18) 2006; 9
Tanoto, Yoon, Loke, Chen, Fitzgerald, Dohrman, Narayanan (bib5) 2008; 103
Huang, Oh, Banerjee, Campbell (bib10) 2007; 43
Yamaguchii (10.1016/j.tsf.2010.03.148_bib1) 1999; 46
Hsu (10.1016/j.tsf.2010.03.148_bib7) 1992; 61
LUO (10.1016/j.tsf.2010.03.148_bib9) 2003; 42
Cunningham (10.1016/j.tsf.2010.03.148_bib14) 1991; 59
King (10.1016/j.tsf.2010.03.148_bib2) 2007; 90
Fitzgerald (10.1016/j.tsf.2010.03.148_bib6) 1991; 59
Kasper (10.1016/j.tsf.2010.03.148_bib16) 1998; 336
Huang (10.1016/j.tsf.2010.03.148_bib10) 2007; 43
Choi (10.1016/j.tsf.2010.03.148_bib4) 2009; 311
Currie (10.1016/j.tsf.2010.03.148_bib8) 1998; 72
Secco d' Aragona (10.1016/j.tsf.2010.03.148_bib17) 1972; 119
Tanoto (10.1016/j.tsf.2010.03.148_bib5) 2008; 103
Sakai (10.1016/j.tsf.2010.03.148_bib15) 1994; 64
Luan (10.1016/j.tsf.2010.03.148_bib13) 1999; 75
Hartmann (10.1016/j.tsf.2010.03.148_bib12) 2005; 274
Marchionna (10.1016/j.tsf.2010.03.148_bib18) 2006; 9
Luo (10.1016/j.tsf.2010.03.148_bib19) 2001; 89
Andre (10.1016/j.tsf.2010.03.148_bib3) 2003; 94
Kim (10.1016/j.tsf.2010.03.148_bib11) 2009; 517
References_xml – volume: 311
  start-page: 1962
  year: 2009
  ident: bib4
  publication-title: J. Cryst. Growth
– volume: 9
  start-page: 802
  year: 2006
  ident: bib18
  publication-title: Mater. Sci. Semicond. Process.
– volume: 75
  start-page: 2909
  year: 1999
  ident: bib13
  publication-title: Appl. Phys. Lett.
– volume: 46
  start-page: 2139
  year: 1999
  ident: bib1
  publication-title: IEEE Trans. Electron Devices
– volume: 90
  start-page: 183516
  year: 2007
  ident: bib2
  publication-title: Appl. Phys. Lett.
– volume: 119
  start-page: 948
  year: 1972
  ident: bib17
  publication-title: J. Electrochem. Soc.
– volume: 72
  start-page: 1718
  year: 1998
  ident: bib8
  publication-title: Appl. Phys. Lett.
– volume: 103
  start-page: 104901
  year: 2008
  ident: bib5
  publication-title: J. Appl. Phys.
– volume: 42
  start-page: L517
  year: 2003
  ident: bib9
  publication-title: Jpn. J. Appl. Phys.
– volume: 274
  start-page: 90
  year: 2005
  ident: bib12
  publication-title: J. Cryst. Growth
– volume: 336
  start-page: 319
  year: 1998
  ident: bib16
  publication-title: Thin Solid Films
– volume: 94
  start-page: 4980
  year: 2003
  ident: bib3
  publication-title: J. Appl. Phys.
– volume: 64
  start-page: 52
  year: 1994
  ident: bib15
  publication-title: Appl. Phys. Lett.
– volume: 89
  start-page: 8279
  year: 2001
  ident: bib19
  publication-title: J. Appl. Phys.
– volume: 43
  start-page: 238
  year: 2007
  ident: bib10
  publication-title: IEEE J. Quantum Electron.
– volume: 59
  start-page: 811
  year: 1991
  ident: bib6
  publication-title: Appl. Phys. Lett.
– volume: 61
  start-page: 1293
  year: 1992
  ident: bib7
  publication-title: Appl. Phys. Lett.
– volume: 517
  start-page: 3990
  year: 2009
  ident: bib11
  publication-title: Thin Solid Films
– volume: 59
  start-page: 3574
  year: 1991
  ident: bib14
  publication-title: Appl. Phys. Lett.
– volume: 59
  start-page: 811
  year: 1991
  ident: 10.1016/j.tsf.2010.03.148_bib6
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.105351
– volume: 59
  start-page: 3574
  year: 1991
  ident: 10.1016/j.tsf.2010.03.148_bib14
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.105636
– volume: 89
  start-page: 8279
  year: 2001
  ident: 10.1016/j.tsf.2010.03.148_bib19
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.1375801
– volume: 64
  start-page: 52
  year: 1994
  ident: 10.1016/j.tsf.2010.03.148_bib15
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.110919
– volume: 336
  start-page: 319
  year: 1998
  ident: 10.1016/j.tsf.2010.03.148_bib16
  publication-title: Thin Solid Films
  doi: 10.1016/S0040-6090(98)01317-0
– volume: 61
  start-page: 1293
  year: 1992
  ident: 10.1016/j.tsf.2010.03.148_bib7
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.107569
– volume: 119
  start-page: 948
  year: 1972
  ident: 10.1016/j.tsf.2010.03.148_bib17
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1.2404374
– volume: 517
  start-page: 3990
  year: 2009
  ident: 10.1016/j.tsf.2010.03.148_bib11
  publication-title: Thin Solid Films
  doi: 10.1016/j.tsf.2009.01.169
– volume: 311
  start-page: 1962
  year: 2009
  ident: 10.1016/j.tsf.2010.03.148_bib4
  publication-title: J. Cryst. Growth
  doi: 10.1016/j.jcrysgro.2008.09.138
– volume: 90
  start-page: 183516
  year: 2007
  ident: 10.1016/j.tsf.2010.03.148_bib2
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.2734507
– volume: 103
  start-page: 104901
  year: 2008
  ident: 10.1016/j.tsf.2010.03.148_bib5
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.2921835
– volume: 9
  start-page: 802
  year: 2006
  ident: 10.1016/j.tsf.2010.03.148_bib18
  publication-title: Mater. Sci. Semicond. Process.
  doi: 10.1016/j.mssp.2006.09.003
– volume: 46
  start-page: 2139
  year: 1999
  ident: 10.1016/j.tsf.2010.03.148_bib1
  publication-title: IEEE Trans. Electron Devices
  doi: 10.1109/16.792009
– volume: 72
  start-page: 1718
  year: 1998
  ident: 10.1016/j.tsf.2010.03.148_bib8
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.121162
– volume: 42
  start-page: L517
  year: 2003
  ident: 10.1016/j.tsf.2010.03.148_bib9
  publication-title: Jpn. J. Appl. Phys.
  doi: 10.1143/JJAP.42.L517
– volume: 43
  start-page: 238
  year: 2007
  ident: 10.1016/j.tsf.2010.03.148_bib10
  publication-title: IEEE J. Quantum Electron.
  doi: 10.1109/JQE.2006.890395
– volume: 94
  start-page: 4980
  year: 2003
  ident: 10.1016/j.tsf.2010.03.148_bib3
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.1610243
– volume: 274
  start-page: 90
  year: 2005
  ident: 10.1016/j.tsf.2010.03.148_bib12
  publication-title: J. Cryst. Growth
  doi: 10.1016/j.jcrysgro.2004.10.042
– volume: 75
  start-page: 2909
  year: 1999
  ident: 10.1016/j.tsf.2010.03.148_bib13
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.125187
SSID ssj0001223
Score 2.114145
Snippet We investigated the effects of low temperature (LT) Ge buffer layers on the two-step Ge growth by varying the thickness of buffer layers. Whereas the two-step...
SourceID proquest
pascalfrancis
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 6496
SubjectTerms Buffer layers
Condensed matter: structure, mechanical and thermal properties
Cross-disciplinary physics: materials science; rheology
Defects and impurities: doping, implantation, distribution, concentration, etc
Density
Exact sciences and technology
Germanium
Low temperature
Materials science
Methods of deposition of films and coatings; film growth and epitaxy
Physics
Silicon
Silicon germanides
Surfaces and interfaces; thin films and whiskers (structure and nonelectronic properties)
Theory and models of film growth
Thickness
Thin film structure and morphology
Thin films
Threading dislocations
Two step growth
UHVCVD
Title The effects of low temperature buffer layer on the growth of pure Ge on Si(001)
URI https://dx.doi.org/10.1016/j.tsf.2010.03.148
https://www.proquest.com/docview/1022875061
Volume 518
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS-RAEC58ICiLuD5w9jH0wh5cIU7SeR9F1NFhXVhX9NZ0tR0dGZJhJ8Pe_O1WTTqDsujBUyDpJklVp-qr9NdfA3wPopSSbK49o1F6kcTUyzEkIJdHViOywhL_0P95kfSvovOb-GYBjtq1MEyrdLG_iemzaO3O9Jw1e-PhkNf4UjLymV7AkodpuAjLMswTGtrLh2eD_sU8IAdSzslz3KGd3JzRvOpJ4QheIUWN7LX09GGsJ2S0otnt4r_APctGJxuw7mCkOGye9CMs2HIT1p6JC27CyozcaSZb8IvGgnDEDVEVYlT9EyxJ5fSUBU55kxQx0gS_RVUKwoTijsrz-p5bj7nJqeULl8M9es8f23B1cvznqO-5jRQ8Qwm49rQkYJZpNFSb-VoTKoitQZvkSNaTKAOdWUwjTCWGEQu2BL6N4yJMLZU3MebhDiyVVWl3QRgkx_iFCagPYRkfgyy9JZCQmaSQNkg74Lf2U8apjPNmFyPV0skeFJlcscmVH1LlkXVgf95l3EhsvNU4ap2iXowTRSngrW7dFw6c34gAZcJKqB341npU0QfGsya6tNV0orgkpqKOcM-n9937M6w2lAMmpn2Bpfrv1H4lJFNjFxYPHoOuG698HPy-HjwBLK_wXw
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9MwED51RWhMCMEYovwonrQHQMqaOEmTPKKJrYO1e2CV9mb5PGcUVUlFU-2Nv527xOmoEH3gNbGV5M6--y7-_BngKIgSSrKZ9oxG6UUSEy_DkIBcFlmNyApL_EN_PBmOptGX6_i6AyftXhimVbrY38T0Olq7KwNnzcFiNuM9vpSMfKYXsORhEu7Ag4imL8_O41_3PI9AyjV1jpu3S5s1yata5o7eFVLMSP-VnB4v9JJMljdnXfwVtutcdPoUnjgQKT417_kMOrbYh70_pAX34WFN7TTL53BJI0E42oYoczEv7wQLUjk1ZYErPiJFzDWBb1EWghChuKXivPrOrRfc5MzyjW-z9_SdHw5gevr56mTkuWMUPEPpt_K0JFiWajRUmflaEyaIrUE7zJBsJ1EGOrWYRJhIDCOWawl8G8d5mFgqbmLMwhfQLcrCvgRhkNzi5yagPoRkfAzS5IYgQmqGubRB0gO_tZ8yTmOcj7qYq5ZM9kORyRWbXPkh1R1pDz6uuywagY1tjaPWKWpjlChKANu69TccuH4Qwckh66D24LD1qKLpxWsmurDlaqm4IKaSjlDPq_979jvYHV2NL9TF-eTra3jUkA-YovYGutXPlX1LmKbCfj1mfwOcUu-A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+effects+of+low+temperature+buffer+layer+on+the+growth+of+pure+Ge+on+Si%28001%29&rft.jtitle=Thin+solid+films&rft.au=Shin%2C+Keun+Wook&rft.au=Kim%2C+Hyun-Woo&rft.au=Kim%2C+Jungsub&rft.au=Yang%2C+Changjae&rft.date=2010-09-01&rft.issn=0040-6090&rft.volume=518&rft.issue=22&rft.spage=6496&rft.epage=6499&rft_id=info:doi/10.1016%2Fj.tsf.2010.03.148&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0040-6090&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0040-6090&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0040-6090&client=summon