The effects of low temperature buffer layer on the growth of pure Ge on Si(001)
We investigated the effects of low temperature (LT) Ge buffer layers on the two-step Ge growth by varying the thickness of buffer layers. Whereas the two-step Ge layers using thin (< 40 nm) Ge buffer layers were roughened due to the formation of SiGe alloy, pure and flat Ge layers were grown by u...
Saved in:
Published in | Thin solid films Vol. 518; no. 22; pp. 6496 - 6499 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Amsterdam
Elsevier B.V
01.09.2010
Elsevier |
Subjects | |
Online Access | Get full text |
ISSN | 0040-6090 1879-2731 |
DOI | 10.1016/j.tsf.2010.03.148 |
Cover
Loading…
Abstract | We investigated the effects of low temperature (LT) Ge buffer layers on the two-step Ge growth by varying the thickness of buffer layers. Whereas the two-step Ge layers using thin (<
40
nm) Ge buffer layers were roughened due to the formation of SiGe alloy, pure and flat Ge layers were grown by using thick (>
50
nm) LT Ge buffer layers. The lowest threading dislocation density of 1.2
×
10
6
cm
−
2 was obtained when 80-nm-thick LT Ge buffer layer was used. We concluded that the minimum thickness of buffer layer was required to grow uniform two-step Ge layers on Si and its quality was subject to the thickness of buffer layer. |
---|---|
AbstractList | We investigated the effects of low temperature (LT) Ge buffer layers on the two-step Ge growth by varying the thickness of buffer layers. Whereas the two-step Ge layers using thin (<
40
nm) Ge buffer layers were roughened due to the formation of SiGe alloy, pure and flat Ge layers were grown by using thick (>
50
nm) LT Ge buffer layers. The lowest threading dislocation density of 1.2
×
10
6
cm
−
2 was obtained when 80-nm-thick LT Ge buffer layer was used. We concluded that the minimum thickness of buffer layer was required to grow uniform two-step Ge layers on Si and its quality was subject to the thickness of buffer layer. We investigated the effects of low temperature (LT) Ge buffer layers on the two-step Ge growth by varying the thickness of buffer layers. Whereas the two-step Ge layers using thin (<40nm) Ge buffer layers were roughened due to the formation of SiGe alloy, pure and flat Ge layers were grown by using thick (>50nm) LT Ge buffer layers. The lowest threading dislocation density of 1.2A-106 cma 2 was obtained when 80-nm-thick LT Ge buffer layer was used. We concluded that the minimum thickness of buffer layer was required to grow uniform two-step Ge layers on Si and its quality was subject to the thickness of buffer layer. |
Author | Kim, Jungsub Shin, Keun Wook Kim, Hyun-Woo Yang, Changjae Yoon, Euijoon Lee, Sangsoo |
Author_xml | – sequence: 1 givenname: Keun Wook surname: Shin fullname: Shin, Keun Wook organization: Department of Materials Science and Engineering, Seoul National University, Seoul 151-744, Republic of Korea – sequence: 2 givenname: Hyun-Woo surname: Kim fullname: Kim, Hyun-Woo organization: Department of Materials Science and Engineering, Seoul National University, Seoul 151-744, Republic of Korea – sequence: 3 givenname: Jungsub surname: Kim fullname: Kim, Jungsub organization: Department of Materials Science and Engineering, Seoul National University, Seoul 151-744, Republic of Korea – sequence: 4 givenname: Changjae surname: Yang fullname: Yang, Changjae organization: Department of Materials Science and Engineering, Seoul National University, Seoul 151-744, Republic of Korea – sequence: 5 givenname: Sangsoo surname: Lee fullname: Lee, Sangsoo organization: Department of Materials Science and Engineering, Seoul National University, Seoul 151-744, Republic of Korea – sequence: 6 givenname: Euijoon surname: Yoon fullname: Yoon, Euijoon email: eyoon@snu.ac.kr organization: Department of Materials Science and Engineering, Seoul National University, Seoul 151-744, Republic of Korea |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=23264827$$DView record in Pascal Francis |
BookMark | eNp9kU1LxDAURYOM4Dj6A9x1I-ii9SX9SIsrGfwCYRaO65DEV83QaWqSOvjvTRnduHCTEN65l8fJMZn1tkdCzihkFGh1tcmCbzMG8Q15Rov6gMxpzZuU8ZzOyByggLSCBo7IsfcbAKCM5XOyWr9jgm2LOvjEtklnd0nA7YBOhtFhosY4c0knv-Jp-yRE_M3ZXXif6GFC7nEaPJuL2Hl5Qg5b2Xk8_bkX5OXudr18SJ9W94_Lm6dUF6wKqWRQFrVUuqEcpARel6gVVo1q4mKKUVmj4oXiTOUFlE1DAcuyzTlWUJWqyRfkYt87OPsxog9ia7zGrpM92tELCozVvISKRvT8B5Vey651stfGi8GZrXRfguWsKuqoaUH4ntPOeu-wFdoEGYztg5Omi5ViUi02IqoWk2oBuYiqY5L-Sf6W_5e53mcwWvo06ITXBnuNr8bFzxCv1vyT_gYXepX0 |
CODEN | THSFAP |
CitedBy_id | crossref_primary_10_3938_jkps_72_633 crossref_primary_10_1063_5_0225536 crossref_primary_10_1016_j_solmat_2018_11_035 crossref_primary_10_1016_j_sse_2016_07_027 crossref_primary_10_1016_j_tsf_2015_08_044 crossref_primary_10_1063_1_3623757 crossref_primary_10_7567_JJAP_55_061302 crossref_primary_10_1016_j_mssp_2014_01_038 crossref_primary_10_1016_j_optmat_2024_116222 crossref_primary_10_1016_j_jcrysgro_2012_09_012 crossref_primary_10_7567_JJAP_52_08JC09 crossref_primary_10_3390_coatings9120823 crossref_primary_10_1016_j_jallcom_2014_12_122 crossref_primary_10_1016_j_jcrysgro_2016_01_005 crossref_primary_10_7567_JJAP_51_055502 crossref_primary_10_1063_1_4896788 crossref_primary_10_1143_JJAP_51_055502 crossref_primary_10_1016_j_actamat_2012_09_082 crossref_primary_10_1088_0268_1242_27_4_043001 crossref_primary_10_3390_cryst12040462 crossref_primary_10_1088_1674_1056_21_1_017805 crossref_primary_10_1007_s13391_019_00179_y crossref_primary_10_3390_nano11040928 |
Cites_doi | 10.1063/1.105351 10.1063/1.105636 10.1063/1.1375801 10.1063/1.110919 10.1016/S0040-6090(98)01317-0 10.1063/1.107569 10.1149/1.2404374 10.1016/j.tsf.2009.01.169 10.1016/j.jcrysgro.2008.09.138 10.1063/1.2734507 10.1063/1.2921835 10.1016/j.mssp.2006.09.003 10.1109/16.792009 10.1063/1.121162 10.1143/JJAP.42.L517 10.1109/JQE.2006.890395 10.1063/1.1610243 10.1016/j.jcrysgro.2004.10.042 10.1063/1.125187 |
ContentType | Journal Article |
Copyright | 2010 Elsevier B.V. 2015 INIST-CNRS |
Copyright_xml | – notice: 2010 Elsevier B.V. – notice: 2015 INIST-CNRS |
DBID | AAYXX CITATION IQODW 7SR 7U5 8BQ 8FD JG9 L7M |
DOI | 10.1016/j.tsf.2010.03.148 |
DatabaseName | CrossRef Pascal-Francis Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace METADEX |
DatabaseTitleList | Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Physics |
EISSN | 1879-2731 |
EndPage | 6499 |
ExternalDocumentID | 23264827 10_1016_j_tsf_2010_03_148 S0040609010004773 |
GroupedDBID | --K --M -~X .DC .~1 0R~ 123 1B1 1RT 1~. 1~5 29Q 4.4 457 4G. 5VS 6TJ 7-5 71M 8P~ 9JN AABNK AABXZ AACTN AAEDT AAEDW AAEPC AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYJJ ABFNM ABFRF ABJNI ABMAC ABNEU ABXDB ABXRA ABYKQ ACBEA ACDAQ ACFVG ACGFO ACGFS ACNNM ACRLP ADBBV ADEZE ADMUD AEBSH AEFWE AEKER AENEX AEZYN AFFNX AFKWA AFRZQ AFTJW AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AIVDX AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BBWZM BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q G8K GBLVA HMV HVGLF HX~ HZ~ IHE J1W KOM M24 M38 M41 MAGPM MO0 N9A NDZJH O-L O9- OAUVE OGIMB OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SDF SDG SDP SES SEW SMS SPC SPCBC SPD SPG SSM SSQ SSZ T5K TWZ VOH WH7 WUQ XFK ZMT ~G- AATTM AAXKI AAYWO AAYXX ABDPE ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH EFKBS IQODW 7SR 7U5 8BQ 8FD JG9 L7M |
ID | FETCH-LOGICAL-c426t-a20548abc9170aa0785ecbe69b9012b21a8eb74b72b34059910e55f37e6065b93 |
IEDL.DBID | AIKHN |
ISSN | 0040-6090 |
IngestDate | Fri Jul 11 10:14:39 EDT 2025 Mon Jul 21 09:11:11 EDT 2025 Thu Apr 24 23:09:27 EDT 2025 Tue Jul 01 03:51:53 EDT 2025 Fri Feb 23 02:31:20 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 22 |
Keywords | Thickness Germanium UHVCVD Two step growth Low temperature Buffer layer Dislocation density Threading dislocation Ge-Si alloys Growth mechanism Silicon |
Language | English |
License | https://www.elsevier.com/tdm/userlicense/1.0 CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c426t-a20548abc9170aa0785ecbe69b9012b21a8eb74b72b34059910e55f37e6065b93 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
PQID | 1022875061 |
PQPubID | 23500 |
PageCount | 4 |
ParticipantIDs | proquest_miscellaneous_1022875061 pascalfrancis_primary_23264827 crossref_citationtrail_10_1016_j_tsf_2010_03_148 crossref_primary_10_1016_j_tsf_2010_03_148 elsevier_sciencedirect_doi_10_1016_j_tsf_2010_03_148 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2010-09-01 |
PublicationDateYYYYMMDD | 2010-09-01 |
PublicationDate_xml | – month: 09 year: 2010 text: 2010-09-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Amsterdam |
PublicationPlace_xml | – name: Amsterdam |
PublicationTitle | Thin solid films |
PublicationYear | 2010 |
Publisher | Elsevier B.V Elsevier |
Publisher_xml | – name: Elsevier B.V – name: Elsevier |
References | Fitzgerald, Xie, Green, Brasen, Kortan, Michel, Mii, Weir (bib6) 1991; 59 Yamaguchii, Luque (bib1) 1999; 46 Hsu, Fitzgerald, Xie, Silverman, Cardillo (bib7) 1992; 61 Luo, Wan, Forrest, Liu, Goorsky, Wang (bib19) 2001; 89 Choi, Harris, Kim, McIntyre, Cagnon, Stemmer (bib4) 2009; 311 Sakai, Tatsumi (bib15) 1994; 64 Kim, Shin, Lee, Yoon (bib11) 2009; 517 Luan, Lim, Lee, Chen, Sandland, Wada, Kimerling (bib13) 1999; 75 Cunningham, Chu, Akbar (bib14) 1991; 59 Secco d' Aragona (bib17) 1972; 119 Kasper, Lyutovich, Bauer, Oehme (bib16) 1998; 336 Currie, Samavedam, Langdo, Leitz, Fitzgerald (bib8) 1998; 72 Hartmann, Damlencourt, Bogumilowicz, Holliger, Rolland, Billon (bib12) 2005; 274 King, Law, Edmondson, Fetzer, Kinsey, Yoon, Sherif, Karam (bib2) 2007; 90 LUO, YANG, CHANG, CHANG, CHAO (bib9) 2003; 42 Andre, Boeckl, Leitz, Curie, Langdo, Fitzgerald, Ringel (bib3) 2003; 94 Marchionna, Virtuani, Acciarri, Isella, von Kaenel (bib18) 2006; 9 Tanoto, Yoon, Loke, Chen, Fitzgerald, Dohrman, Narayanan (bib5) 2008; 103 Huang, Oh, Banerjee, Campbell (bib10) 2007; 43 Yamaguchii (10.1016/j.tsf.2010.03.148_bib1) 1999; 46 Hsu (10.1016/j.tsf.2010.03.148_bib7) 1992; 61 LUO (10.1016/j.tsf.2010.03.148_bib9) 2003; 42 Cunningham (10.1016/j.tsf.2010.03.148_bib14) 1991; 59 King (10.1016/j.tsf.2010.03.148_bib2) 2007; 90 Fitzgerald (10.1016/j.tsf.2010.03.148_bib6) 1991; 59 Kasper (10.1016/j.tsf.2010.03.148_bib16) 1998; 336 Huang (10.1016/j.tsf.2010.03.148_bib10) 2007; 43 Choi (10.1016/j.tsf.2010.03.148_bib4) 2009; 311 Currie (10.1016/j.tsf.2010.03.148_bib8) 1998; 72 Secco d' Aragona (10.1016/j.tsf.2010.03.148_bib17) 1972; 119 Tanoto (10.1016/j.tsf.2010.03.148_bib5) 2008; 103 Sakai (10.1016/j.tsf.2010.03.148_bib15) 1994; 64 Luan (10.1016/j.tsf.2010.03.148_bib13) 1999; 75 Hartmann (10.1016/j.tsf.2010.03.148_bib12) 2005; 274 Marchionna (10.1016/j.tsf.2010.03.148_bib18) 2006; 9 Luo (10.1016/j.tsf.2010.03.148_bib19) 2001; 89 Andre (10.1016/j.tsf.2010.03.148_bib3) 2003; 94 Kim (10.1016/j.tsf.2010.03.148_bib11) 2009; 517 |
References_xml | – volume: 311 start-page: 1962 year: 2009 ident: bib4 publication-title: J. Cryst. Growth – volume: 9 start-page: 802 year: 2006 ident: bib18 publication-title: Mater. Sci. Semicond. Process. – volume: 75 start-page: 2909 year: 1999 ident: bib13 publication-title: Appl. Phys. Lett. – volume: 46 start-page: 2139 year: 1999 ident: bib1 publication-title: IEEE Trans. Electron Devices – volume: 90 start-page: 183516 year: 2007 ident: bib2 publication-title: Appl. Phys. Lett. – volume: 119 start-page: 948 year: 1972 ident: bib17 publication-title: J. Electrochem. Soc. – volume: 72 start-page: 1718 year: 1998 ident: bib8 publication-title: Appl. Phys. Lett. – volume: 103 start-page: 104901 year: 2008 ident: bib5 publication-title: J. Appl. Phys. – volume: 42 start-page: L517 year: 2003 ident: bib9 publication-title: Jpn. J. Appl. Phys. – volume: 274 start-page: 90 year: 2005 ident: bib12 publication-title: J. Cryst. Growth – volume: 336 start-page: 319 year: 1998 ident: bib16 publication-title: Thin Solid Films – volume: 94 start-page: 4980 year: 2003 ident: bib3 publication-title: J. Appl. Phys. – volume: 64 start-page: 52 year: 1994 ident: bib15 publication-title: Appl. Phys. Lett. – volume: 89 start-page: 8279 year: 2001 ident: bib19 publication-title: J. Appl. Phys. – volume: 43 start-page: 238 year: 2007 ident: bib10 publication-title: IEEE J. Quantum Electron. – volume: 59 start-page: 811 year: 1991 ident: bib6 publication-title: Appl. Phys. Lett. – volume: 61 start-page: 1293 year: 1992 ident: bib7 publication-title: Appl. Phys. Lett. – volume: 517 start-page: 3990 year: 2009 ident: bib11 publication-title: Thin Solid Films – volume: 59 start-page: 3574 year: 1991 ident: bib14 publication-title: Appl. Phys. Lett. – volume: 59 start-page: 811 year: 1991 ident: 10.1016/j.tsf.2010.03.148_bib6 publication-title: Appl. Phys. Lett. doi: 10.1063/1.105351 – volume: 59 start-page: 3574 year: 1991 ident: 10.1016/j.tsf.2010.03.148_bib14 publication-title: Appl. Phys. Lett. doi: 10.1063/1.105636 – volume: 89 start-page: 8279 year: 2001 ident: 10.1016/j.tsf.2010.03.148_bib19 publication-title: J. Appl. Phys. doi: 10.1063/1.1375801 – volume: 64 start-page: 52 year: 1994 ident: 10.1016/j.tsf.2010.03.148_bib15 publication-title: Appl. Phys. Lett. doi: 10.1063/1.110919 – volume: 336 start-page: 319 year: 1998 ident: 10.1016/j.tsf.2010.03.148_bib16 publication-title: Thin Solid Films doi: 10.1016/S0040-6090(98)01317-0 – volume: 61 start-page: 1293 year: 1992 ident: 10.1016/j.tsf.2010.03.148_bib7 publication-title: Appl. Phys. Lett. doi: 10.1063/1.107569 – volume: 119 start-page: 948 year: 1972 ident: 10.1016/j.tsf.2010.03.148_bib17 publication-title: J. Electrochem. Soc. doi: 10.1149/1.2404374 – volume: 517 start-page: 3990 year: 2009 ident: 10.1016/j.tsf.2010.03.148_bib11 publication-title: Thin Solid Films doi: 10.1016/j.tsf.2009.01.169 – volume: 311 start-page: 1962 year: 2009 ident: 10.1016/j.tsf.2010.03.148_bib4 publication-title: J. Cryst. Growth doi: 10.1016/j.jcrysgro.2008.09.138 – volume: 90 start-page: 183516 year: 2007 ident: 10.1016/j.tsf.2010.03.148_bib2 publication-title: Appl. Phys. Lett. doi: 10.1063/1.2734507 – volume: 103 start-page: 104901 year: 2008 ident: 10.1016/j.tsf.2010.03.148_bib5 publication-title: J. Appl. Phys. doi: 10.1063/1.2921835 – volume: 9 start-page: 802 year: 2006 ident: 10.1016/j.tsf.2010.03.148_bib18 publication-title: Mater. Sci. Semicond. Process. doi: 10.1016/j.mssp.2006.09.003 – volume: 46 start-page: 2139 year: 1999 ident: 10.1016/j.tsf.2010.03.148_bib1 publication-title: IEEE Trans. Electron Devices doi: 10.1109/16.792009 – volume: 72 start-page: 1718 year: 1998 ident: 10.1016/j.tsf.2010.03.148_bib8 publication-title: Appl. Phys. Lett. doi: 10.1063/1.121162 – volume: 42 start-page: L517 year: 2003 ident: 10.1016/j.tsf.2010.03.148_bib9 publication-title: Jpn. J. Appl. Phys. doi: 10.1143/JJAP.42.L517 – volume: 43 start-page: 238 year: 2007 ident: 10.1016/j.tsf.2010.03.148_bib10 publication-title: IEEE J. Quantum Electron. doi: 10.1109/JQE.2006.890395 – volume: 94 start-page: 4980 year: 2003 ident: 10.1016/j.tsf.2010.03.148_bib3 publication-title: J. Appl. Phys. doi: 10.1063/1.1610243 – volume: 274 start-page: 90 year: 2005 ident: 10.1016/j.tsf.2010.03.148_bib12 publication-title: J. Cryst. Growth doi: 10.1016/j.jcrysgro.2004.10.042 – volume: 75 start-page: 2909 year: 1999 ident: 10.1016/j.tsf.2010.03.148_bib13 publication-title: Appl. Phys. Lett. doi: 10.1063/1.125187 |
SSID | ssj0001223 |
Score | 2.114145 |
Snippet | We investigated the effects of low temperature (LT) Ge buffer layers on the two-step Ge growth by varying the thickness of buffer layers. Whereas the two-step... |
SourceID | proquest pascalfrancis crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 6496 |
SubjectTerms | Buffer layers Condensed matter: structure, mechanical and thermal properties Cross-disciplinary physics: materials science; rheology Defects and impurities: doping, implantation, distribution, concentration, etc Density Exact sciences and technology Germanium Low temperature Materials science Methods of deposition of films and coatings; film growth and epitaxy Physics Silicon Silicon germanides Surfaces and interfaces; thin films and whiskers (structure and nonelectronic properties) Theory and models of film growth Thickness Thin film structure and morphology Thin films Threading dislocations Two step growth UHVCVD |
Title | The effects of low temperature buffer layer on the growth of pure Ge on Si(001) |
URI | https://dx.doi.org/10.1016/j.tsf.2010.03.148 https://www.proquest.com/docview/1022875061 |
Volume | 518 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS-RAEC58ICiLuD5w9jH0wh5cIU7SeR9F1NFhXVhX9NZ0tR0dGZJhJ8Pe_O1WTTqDsujBUyDpJklVp-qr9NdfA3wPopSSbK49o1F6kcTUyzEkIJdHViOywhL_0P95kfSvovOb-GYBjtq1MEyrdLG_iemzaO3O9Jw1e-PhkNf4UjLymV7AkodpuAjLMswTGtrLh2eD_sU8IAdSzslz3KGd3JzRvOpJ4QheIUWN7LX09GGsJ2S0otnt4r_APctGJxuw7mCkOGye9CMs2HIT1p6JC27CyozcaSZb8IvGgnDEDVEVYlT9EyxJ5fSUBU55kxQx0gS_RVUKwoTijsrz-p5bj7nJqeULl8M9es8f23B1cvznqO-5jRQ8Qwm49rQkYJZpNFSb-VoTKoitQZvkSNaTKAOdWUwjTCWGEQu2BL6N4yJMLZU3MebhDiyVVWl3QRgkx_iFCagPYRkfgyy9JZCQmaSQNkg74Lf2U8apjPNmFyPV0skeFJlcscmVH1LlkXVgf95l3EhsvNU4ap2iXowTRSngrW7dFw6c34gAZcJKqB341npU0QfGsya6tNV0orgkpqKOcM-n9937M6w2lAMmpn2Bpfrv1H4lJFNjFxYPHoOuG698HPy-HjwBLK_wXw |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9MwED51RWhMCMEYovwonrQHQMqaOEmTPKKJrYO1e2CV9mb5PGcUVUlFU-2Nv527xOmoEH3gNbGV5M6--y7-_BngKIgSSrKZ9oxG6UUSEy_DkIBcFlmNyApL_EN_PBmOptGX6_i6AyftXhimVbrY38T0Olq7KwNnzcFiNuM9vpSMfKYXsORhEu7Ag4imL8_O41_3PI9AyjV1jpu3S5s1yata5o7eFVLMSP-VnB4v9JJMljdnXfwVtutcdPoUnjgQKT417_kMOrbYh70_pAX34WFN7TTL53BJI0E42oYoczEv7wQLUjk1ZYErPiJFzDWBb1EWghChuKXivPrOrRfc5MzyjW-z9_SdHw5gevr56mTkuWMUPEPpt_K0JFiWajRUmflaEyaIrUE7zJBsJ1EGOrWYRJhIDCOWawl8G8d5mFgqbmLMwhfQLcrCvgRhkNzi5yagPoRkfAzS5IYgQmqGubRB0gO_tZ8yTmOcj7qYq5ZM9kORyRWbXPkh1R1pDz6uuywagY1tjaPWKWpjlChKANu69TccuH4Qwckh66D24LD1qKLpxWsmurDlaqm4IKaSjlDPq_979jvYHV2NL9TF-eTra3jUkA-YovYGutXPlX1LmKbCfj1mfwOcUu-A |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+effects+of+low+temperature+buffer+layer+on+the+growth+of+pure+Ge+on+Si%28001%29&rft.jtitle=Thin+solid+films&rft.au=Shin%2C+Keun+Wook&rft.au=Kim%2C+Hyun-Woo&rft.au=Kim%2C+Jungsub&rft.au=Yang%2C+Changjae&rft.date=2010-09-01&rft.issn=0040-6090&rft.volume=518&rft.issue=22&rft.spage=6496&rft.epage=6499&rft_id=info:doi/10.1016%2Fj.tsf.2010.03.148&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0040-6090&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0040-6090&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0040-6090&client=summon |