The effects of low temperature buffer layer on the growth of pure Ge on Si(001)

We investigated the effects of low temperature (LT) Ge buffer layers on the two-step Ge growth by varying the thickness of buffer layers. Whereas the two-step Ge layers using thin (< 40 nm) Ge buffer layers were roughened due to the formation of SiGe alloy, pure and flat Ge layers were grown by u...

Full description

Saved in:
Bibliographic Details
Published inThin solid films Vol. 518; no. 22; pp. 6496 - 6499
Main Authors Shin, Keun Wook, Kim, Hyun-Woo, Kim, Jungsub, Yang, Changjae, Lee, Sangsoo, Yoon, Euijoon
Format Journal Article
LanguageEnglish
Published Amsterdam Elsevier B.V 01.09.2010
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:We investigated the effects of low temperature (LT) Ge buffer layers on the two-step Ge growth by varying the thickness of buffer layers. Whereas the two-step Ge layers using thin (< 40 nm) Ge buffer layers were roughened due to the formation of SiGe alloy, pure and flat Ge layers were grown by using thick (> 50 nm) LT Ge buffer layers. The lowest threading dislocation density of 1.2 × 10 6 cm − 2 was obtained when 80-nm-thick LT Ge buffer layer was used. We concluded that the minimum thickness of buffer layer was required to grow uniform two-step Ge layers on Si and its quality was subject to the thickness of buffer layer.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:0040-6090
1879-2731
DOI:10.1016/j.tsf.2010.03.148