Research on Dynamic Load Identification Based on Explicit Wilson-θ and Improved Regularization Algorithm

In the research of dynamic load identification, the method of obtaining kernel function matrix is usually rather cumbersome. To solve this problem, an explicit dynamic load identification algorithm based on the Wilson-θ (DLIAEW) method is proposed to easily obtain the kernel function matrix as long...

Full description

Saved in:
Bibliographic Details
Published inShock and vibration Vol. 2019; no. 2019; pp. 1 - 15
Main Authors Fan, Yuchuan, Yu, Hongye, Zhao, Chunyu
Format Journal Article
LanguageEnglish
Published Cairo, Egypt Hindawi Publishing Corporation 01.01.2019
Hindawi
Hindawi Limited
Wiley
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:In the research of dynamic load identification, the method of obtaining kernel function matrix is usually rather cumbersome. To solve this problem, an explicit dynamic load identification algorithm based on the Wilson-θ (DLIAEW) method is proposed to easily obtain the kernel function matrix as long as the parameters of the system are known. To aim at the ill-posed problem in the inverse problem, this paper improves the Tikhonov regularization, proposes an improved regularization algorithm (IRA), and introduces the U-curve method to determine the regularization parameters. In the numeric simulation investigation of a four dofs vibrating system, effects of the sampling frequency and the noise level on the regularization parameters and the identification errors of impact and harmonic loads for the IRA are discussed in comparison with the Tikhonov regularization. Finally, the experiments of a cantilever beam excited by impact and harmonic loads are carried out to verify the advantages of the IRA.
ISSN:1070-9622
1875-9203
DOI:10.1155/2019/8756546