The need for rotational margins in intensity-modulated radiotherapy and a new method for planning target volume design

Purpose: The effect of rotational errors on the coverage of clinical target volumes (CTVs) is examined. A new planning target volume (PTV) construction that considers the individual paths traced by movements of the target boundary points is developed. Methods and Materials: A standard uniform margin...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of radiation oncology, biology, physics Vol. 63; no. 5; pp. 1592 - 1603
Main Authors Langer, Mark Peter, Papiez, Lech, Spirydovich, Siarhei, Thai, Van
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 01.12.2005
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Purpose: The effect of rotational errors on the coverage of clinical target volumes (CTVs) is examined. A new planning target volume (PTV) construction that considers the individual paths traced by movements of the target boundary points is developed. Methods and Materials: A standard uniform margin expansion was compared with a PTV constructed from the space swept out by a concave moving target. A new method formed the PTV by aggregating the separate convex hulls taken of the positions of the individual target boundary points in a sampling of CTV displacements. Results: A 0.5-cm uniform margin adequate for translations was inadequate given CTV rotation about a fixed off-center axis. A PTV formed of the target’s swept-out area was 22% smaller than needed for coverage by a uniform margin, but computationally is not readily extended to translations combined with rotations about a shifting axis. Forming instead the union of convex hulls of the boundary points in a sampling of CTV displacements represented these movements in the PTV design and retained the target’s concave shape. Conclusions: Planning target volumes should accommodate target rotation. The union of convex hulls of the boundary point positions in a sampling of displacements can effectively represent multiple sources of deviations while preserving target concavities.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0360-3016
1879-355X
DOI:10.1016/j.ijrobp.2005.08.021