Acetate generation in rat liver mitochondria; acetyl-CoA hydrolase activity is demonstrated by 3-ketoacyl-CoA thiolase
Acetate has been found as an endogenous metabolite of β-oxidation of fatty acids in liver. In order to investigate the regulation of acetate generation in liver mitochondria, we attempted to purify a mitochondrial acetyl-CoA hydrolase in rat liver. This acetyl-CoA-hydrolyzing activity in isolated mi...
Saved in:
Published in | Biochimica et biophysica acta Vol. 1761; no. 1; pp. 17 - 23 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier B.V
2006
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Acetate has been found as an endogenous metabolite of β-oxidation of fatty acids in liver. In order to investigate the regulation of acetate generation in liver mitochondria, we attempted to purify a mitochondrial acetyl-CoA hydrolase in rat liver. This acetyl-CoA-hydrolyzing activity in isolated mitochondria was induced by the treatment of rats with di(2-ehtylhexyl)phthalate (DEHP), a peroxisome proliferator which induces expression of several peroxisomal and mitochondrial enzymes involved in β-oxidation of fatty acids. The purified enzyme was 43-kDa in molecular mass by SDS/PAGE. Internal amino acid sequencing of this enzyme revealed that it was identical with mitochondrial 3-ketoacyl-CoA thiolase, suggesting that this enzyme has two kinds of activities, 3-ketoacyl-CoA thiolase and acetyl-CoA hydrolase activities. Kinetic studies clearly indicated that this enzyme had the both activities and each activity was inhibited by the substrates of the other activity, that is, 3-ketoacyl-CoA thiolase activity was inhibited by acetyl-CoA, on the other hand, acetyl-CoA hydrolase activity was inhibited by acetoacetyl-CoA in a competitive manner. These findings suggested that acetate generation in liver mitochondria is a side reaction of this known enzyme, 3-ketoacyl-CoA thiolase, and this enzyme may regulate its activities depending on each substrate level. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 1388-1981 0006-3002 1879-2618 |
DOI: | 10.1016/j.bbalip.2006.01.001 |