Deep Residual Bidir-LSTM for Human Activity Recognition Using Wearable Sensors

Human activity recognition (HAR) has become a popular topic in research because of its wide application. With the development of deep learning, new ideas have appeared to address HAR problems. Here, a deep network architecture using residual bidirectional long short-term memory (LSTM) is proposed. T...

Full description

Saved in:
Bibliographic Details
Published inMathematical problems in engineering Vol. 2018; no. 2018; pp. 1 - 13
Main Authors Xu, Ximeng, Chevalier, Guillaume, Yang, Rennong, Zhao, Yu, Zhang, Zhenxing
Format Journal Article
LanguageEnglish
Published Cairo, Egypt Hindawi Publishing Corporation 01.01.2018
Hindawi
John Wiley & Sons, Inc
Subjects
Online AccessGet full text
ISSN1024-123X
1563-5147
DOI10.1155/2018/7316954

Cover

Loading…
More Information
Summary:Human activity recognition (HAR) has become a popular topic in research because of its wide application. With the development of deep learning, new ideas have appeared to address HAR problems. Here, a deep network architecture using residual bidirectional long short-term memory (LSTM) is proposed. The advantages of the new network include that a bidirectional connection can concatenate the positive time direction (forward state) and the negative time direction (backward state). Second, residual connections between stacked cells act as shortcut for gradients, effectively avoiding the gradient vanishing problem. Generally, the proposed network shows improvements on both the temporal (using bidirectional cells) and the spatial (residual connections stacked) dimensions, aiming to enhance the recognition rate. When testing with the Opportunity dataset and the public domain UCI dataset, the accuracy is significantly improved compared with previous results.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1024-123X
1563-5147
DOI:10.1155/2018/7316954