Deep Residual Bidir-LSTM for Human Activity Recognition Using Wearable Sensors
Human activity recognition (HAR) has become a popular topic in research because of its wide application. With the development of deep learning, new ideas have appeared to address HAR problems. Here, a deep network architecture using residual bidirectional long short-term memory (LSTM) is proposed. T...
Saved in:
Published in | Mathematical problems in engineering Vol. 2018; no. 2018; pp. 1 - 13 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Cairo, Egypt
Hindawi Publishing Corporation
01.01.2018
Hindawi John Wiley & Sons, Inc |
Subjects | |
Online Access | Get full text |
ISSN | 1024-123X 1563-5147 |
DOI | 10.1155/2018/7316954 |
Cover
Loading…
Summary: | Human activity recognition (HAR) has become a popular topic in research because of its wide application. With the development of deep learning, new ideas have appeared to address HAR problems. Here, a deep network architecture using residual bidirectional long short-term memory (LSTM) is proposed. The advantages of the new network include that a bidirectional connection can concatenate the positive time direction (forward state) and the negative time direction (backward state). Second, residual connections between stacked cells act as shortcut for gradients, effectively avoiding the gradient vanishing problem. Generally, the proposed network shows improvements on both the temporal (using bidirectional cells) and the spatial (residual connections stacked) dimensions, aiming to enhance the recognition rate. When testing with the Opportunity dataset and the public domain UCI dataset, the accuracy is significantly improved compared with previous results. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ISSN: | 1024-123X 1563-5147 |
DOI: | 10.1155/2018/7316954 |