Enhanced fear expression in Spir-1 actin organizer mutant mice
Spir proteins nucleate actin filaments at vesicle membranes and facilitate intracellular transport processes. The mammalian genome encodes two Spir proteins, namely Spir-1 and Spir-2. While the mouse spir-2 gene has a rather broad expression pattern, high levels of spir-1 expression are restricted t...
Saved in:
Published in | European journal of cell biology Vol. 93; no. 5-6; pp. 225 - 237 |
---|---|
Main Authors | , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Elsevier GmbH
01.05.2014
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Spir proteins nucleate actin filaments at vesicle membranes and facilitate intracellular transport processes. The mammalian genome encodes two Spir proteins, namely Spir-1 and Spir-2. While the mouse spir-2 gene has a rather broad expression pattern, high levels of spir-1 expression are restricted to the nervous system, oocytes, and testis. Spir-1 mutant mice generated by a gene trap method have been employed to address Spir-1 function during mouse development and in adult mouse tissues, with a specific emphasis on viability, reproduction, and the nervous system. The gene trap cassette disrupts Spir-1 expression between the N-terminal KIND domain and the WH2 domain cluster. Spir-1 mutant mice are viable and were born in a Mendelian ratio. In accordance with the redundant function of Spir-1 and Spir-2 in oocyte maturation, spir-1 mutant mice are fertile. The overall brain anatomy of spir-1 mutant mice is not altered and visual and motor functions of the mice remain normal. Microscopic analysis shows a slight reduction in the number of dendritic spines on cortical neurons. Detailed behavioral studies of the spir-1 mutant mice, however, unveiled a very specific and highly significant phenotype in terms of fear learning in male mice. In contextual and cued fear conditioning experiments the male spir-1 mutant mice display increased fear memory when compared to their control littermates. Our data point toward a particular function of the vesicle associated Spir-1 actin organizer in neuronal circuits determining fear behavior. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0171-9335 1618-1298 |
DOI: | 10.1016/j.ejcb.2013.11.001 |