Phenomenology of GUT-inspired gauge-Higgs unification

We perform a detailed investigation of a Grand Unified Theory (GUT)-inspired theory of gauge-Higgs unification. Scanning the model's parameter space with adapted numerical techniques, we contrast the scenario's low energy limit with existing SM and collider search constraints. We discuss p...

Full description

Saved in:
Bibliographic Details
Published inPhysics letters. B Vol. 802; p. 135261
Main Authors Englert, Christoph, Miller, David J., Smaranda, Dumitru Dan
Format Journal Article
LanguageEnglish
Published Elsevier B.V 10.03.2020
Elsevier
Online AccessGet full text

Cover

Loading…
More Information
Summary:We perform a detailed investigation of a Grand Unified Theory (GUT)-inspired theory of gauge-Higgs unification. Scanning the model's parameter space with adapted numerical techniques, we contrast the scenario's low energy limit with existing SM and collider search constraints. We discuss potential modifications of di-Higgs phenomenology at hadron colliders as sensitive probes of the gauge-like character of the Higgs self-interactions and find that for phenomenologically viable parameter choices modifications of the order of 20% compared to the SM cross section can be expected. While these modifications are challenging to observe at the LHC, a future 100 TeV hadron collider might be able to constrain the scenario through more precise di-Higgs measurements. We point out alternative signatures that can be employed to constrain this model in the near future.
ISSN:0370-2693
1873-2445
DOI:10.1016/j.physletb.2020.135261