Buckling-induced smart applications: recent advances and trends
A paradigm shift has emerged over the last decade pointing to an exciting research area dealing with the harnessing of elastic structural instabilities for 'smart' purposes in a variety of venues. Among the different types of unstable responses, buckling is a phenomenon that has been known...
Saved in:
Published in | Smart materials and structures Vol. 24; no. 6; pp. 63001 - 20 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
IOP Publishing
01.06.2015
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | A paradigm shift has emerged over the last decade pointing to an exciting research area dealing with the harnessing of elastic structural instabilities for 'smart' purposes in a variety of venues. Among the different types of unstable responses, buckling is a phenomenon that has been known for centuries, and yet it is generally avoided through special design modifications. Increasing interest in the design of smart devices and mechanical systems has identified buckling and postbuckling response as a favorable behavior. The objective of this topical review is to showcase the recent advances in buckling-induced smart applications and to explain why buckling responses have certain advantages and are especially suitable for these particular applications. Interesting prototypes in terms of structural forms and material uses associated with these applications are summarized. Finally, this review identifies potential research avenues and emerging trends for using buckling and other elastic instabilities for future innovations. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0964-1726 1361-665X |
DOI: | 10.1088/0964-1726/24/6/063001 |