On a new generalization of some Hilbert-type inequalities
In this work, by introducing several parameters, a new kernel function including both the homogeneous and non-homogeneous cases is constructed, and a Hilbert-type inequality related to the newly constructed kernel function is established. By convention, the equivalent Hardy-type inequality is also c...
Saved in:
Published in | Open mathematics (Warsaw, Poland) Vol. 19; no. 1; pp. 569 - 582 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Warsaw
De Gruyter
09.07.2021
De Gruyter Poland |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | In this work, by introducing several parameters, a new kernel function including both the homogeneous and non-homogeneous cases is constructed, and a Hilbert-type inequality related to the newly constructed kernel function is established. By convention, the equivalent Hardy-type inequality is also considered. Furthermore, by introducing the partial fraction expansions of trigonometric functions, some special and interesting Hilbert-type inequalities with the constant factors represented by the higher derivatives of trigonometric functions, the Euler number and the Bernoulli number are presented at the end of the paper. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ISSN: | 2391-5455 2391-5455 |
DOI: | 10.1515/math-2021-0034 |