BIEMBEDDINGS OF LATIN SQUARES AND HAMILTONIAN DECOMPOSITIONS

Face 2-colourable triangulations of complete tripartite graphs $K_{n,n,n}$ correspond to biembeddings of Latin squares. Up to isomorphism, we give all such embeddings for $n=3,4,5$ and 6, and we summarize the corresponding results for $n=7$. Closely related to these are Hamiltonian decompositions of...

Full description

Saved in:
Bibliographic Details
Published inGlasgow mathematical journal Vol. 46; no. 3; pp. 443 - 457
Main Authors GRANNELL, M. J., GRIGGS, T. S., KNOR, M.
Format Journal Article
LanguageEnglish
Published Cambridge, UK Cambridge University Press 01.09.2004
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Face 2-colourable triangulations of complete tripartite graphs $K_{n,n,n}$ correspond to biembeddings of Latin squares. Up to isomorphism, we give all such embeddings for $n=3,4,5$ and 6, and we summarize the corresponding results for $n=7$. Closely related to these are Hamiltonian decompositions of complete bipartite directed graphs $K^*_{n,n}$, and we also give computational results for these in the cases $n=3,4,5$ and 6.
Bibliography:istex:A9B944C7E599AA741DD5F626C50FF4C12473AB2D
ark:/67375/6GQ-5GXPQ51N-X
PII:S0017089504001922
ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:0017-0895
1469-509X
DOI:10.1017/S0017089504001922