Studies of the effect of pressure and hydrogen permeance on the ethanol steam reforming reaction with palladium- and silica-based membranes
The performance of membrane reactors fitted with silica-based and palladium-based membranes with hydrogen permeances of 10−8–10−6molm−2s−1Pa−1 was studied and it was found that permeance had a favorable effect in the performance of the reactors. The system studied was the ethanol steam reforming. Th...
Saved in:
Published in | Journal of membrane science Vol. 396; pp. 119 - 127 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Amsterdam
Elsevier B.V
01.04.2012
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The performance of membrane reactors fitted with silica-based and palladium-based membranes with hydrogen permeances of 10−8–10−6molm−2s−1Pa−1 was studied and it was found that permeance had a favorable effect in the performance of the reactors. The system studied was the ethanol steam reforming. The highest ethanol conversion enhancement of 44% compared to a packed-bed reactor was obtained in a membrane reactor fitted with the highest hydrogen permeance of 3.9×10−6molm−2s−1Pa−1. The necessary permeance for commercial operation is calculated to be 2.5×10−7molm−2s−1Pa−1. [Display omitted]
► A membrane reactor produced enhanced ethanol conversion over a packed-bed reactor. ► Both H2 permeance and selectivity had a favorable effect in membrane reactors. ► A Weisz's “window of reality” analysis gave the needed permeance for commercialization. ► The necessary H2 permeance was 2.5×10−7molm−2s−1Pa−1 with 1cm OD tubes.
The effects of hydrogen permeance and selectivity in the performance of membrane reactors for the ethanol steam reforming (EtOHSR) were studied at 1–10atm and 623K. The studies were performed with Pd–Cu and SiO2–Al2O3 composite membranes prepared by depositing the permselective components onto porous alumina supports with intermediate layers. The hydrogen permeances of the membranes varied from 5.2×10−8 to 3.9×10−6molm−2s−1Pa−1 and the selectivity ranged from 200 to 1000 (H2/CO2) at 623K, which allowed a broad set of conditions to be probed. Comparison studies with packed-bed reactor (PBR) and membrane reactor (MR) operation showed that higher ethanol conversions and hydrogen molar flows were obtained in the MRs for all pressures studied. It was determined that both hydrogen permeance and selectivity had a favorable effect on the EtOHSR reaction, with the highest ethanol conversion enhancement of 44% and hydrogen molar flow enhancement of 69% obtained in a MR fitted with a membrane with the highest hydrogen permeance. A criterion for the required permeance for industrial applications is developed, which for 1cm diameter membrane tubes is 2.5×10−7molm−2s−1Pa−1. |
---|---|
AbstractList | The performance of membrane reactors fitted with silica-based and palladium-based membranes with hydrogen permeances of 10−8–10−6molm−2s−1Pa−1 was studied and it was found that permeance had a favorable effect in the performance of the reactors. The system studied was the ethanol steam reforming. The highest ethanol conversion enhancement of 44% compared to a packed-bed reactor was obtained in a membrane reactor fitted with the highest hydrogen permeance of 3.9×10−6molm−2s−1Pa−1. The necessary permeance for commercial operation is calculated to be 2.5×10−7molm−2s−1Pa−1. [Display omitted]
► A membrane reactor produced enhanced ethanol conversion over a packed-bed reactor. ► Both H2 permeance and selectivity had a favorable effect in membrane reactors. ► A Weisz's “window of reality” analysis gave the needed permeance for commercialization. ► The necessary H2 permeance was 2.5×10−7molm−2s−1Pa−1 with 1cm OD tubes.
The effects of hydrogen permeance and selectivity in the performance of membrane reactors for the ethanol steam reforming (EtOHSR) were studied at 1–10atm and 623K. The studies were performed with Pd–Cu and SiO2–Al2O3 composite membranes prepared by depositing the permselective components onto porous alumina supports with intermediate layers. The hydrogen permeances of the membranes varied from 5.2×10−8 to 3.9×10−6molm−2s−1Pa−1 and the selectivity ranged from 200 to 1000 (H2/CO2) at 623K, which allowed a broad set of conditions to be probed. Comparison studies with packed-bed reactor (PBR) and membrane reactor (MR) operation showed that higher ethanol conversions and hydrogen molar flows were obtained in the MRs for all pressures studied. It was determined that both hydrogen permeance and selectivity had a favorable effect on the EtOHSR reaction, with the highest ethanol conversion enhancement of 44% and hydrogen molar flow enhancement of 69% obtained in a MR fitted with a membrane with the highest hydrogen permeance. A criterion for the required permeance for industrial applications is developed, which for 1cm diameter membrane tubes is 2.5×10−7molm−2s−1Pa−1. The effects of hydrogen permeance and selectivity in the performance of membrane reactors for the ethanol steam reforming (EtOHSR) were studied at 1–10atm and 623K. The studies were performed with Pd–Cu and SiO₂–Al₂O₃ composite membranes prepared by depositing the permselective components onto porous alumina supports with intermediate layers. The hydrogen permeances of the membranes varied from 5.2×10⁻⁸ to 3.9×10⁻⁶molm⁻²s⁻¹Pa⁻¹ and the selectivity ranged from 200 to 1000 (H₂/CO₂) at 623K, which allowed a broad set of conditions to be probed. Comparison studies with packed-bed reactor (PBR) and membrane reactor (MR) operation showed that higher ethanol conversions and hydrogen molar flows were obtained in the MRs for all pressures studied. It was determined that both hydrogen permeance and selectivity had a favorable effect on the EtOHSR reaction, with the highest ethanol conversion enhancement of 44% and hydrogen molar flow enhancement of 69% obtained in a MR fitted with a membrane with the highest hydrogen permeance. A criterion for the required permeance for industrial applications is developed, which for 1cm diameter membrane tubes is 2.5×10⁻⁷molm⁻²s⁻¹Pa⁻¹. The effects of hydrogen permeance and selectivity in the performance of membrane reactors for the ethanol steam reforming (EtOHSR) were studied at 1-10 atm and 623 K. The studies were performed with Pd-Cu and SiO2-Al2O3 composite membranes prepared by depositing the permselective components onto porous alumina supports with intermediate layers. The hydrogen permeances of the membranes varied from 5.2 10-8 to 3.9 10-6 mol m-2 s-1 Pa-1 and the selectivity ranged from 200 to 1000 (H2/CO2) at 623 K, which allowed a broad set of conditions to be probed. Comparison studies with packed-bed reactor (PBR) and membrane reactor (MR) operation showed that higher ethanol conversions and hydrogen molar flows were obtained in the MRs for all pressures studied. It was determined that both hydrogen permeance and selectivity had a favorable effect on the EtOHSR reaction, with the highest ethanol conversion enhancement of 44% and hydrogen molar flow enhancement of 69% obtained in a MR fitted with a membrane with the highest hydrogen permeance. A criterion for the required permeance for industrial applications is developed, which for 1 cm diameter membrane tubes is 2.5 10-7 mol m-2 s-1 Pa-1. The effects of hydrogen permeance and selectivity on the performance of membrane reactors for ethanol steam reforming (EtOHSR) were studied at 1-10 atm and 623 K. Pd-Cu and SiO2-Al2O3 composite membranes prepared by depositing the permselective components onto porous alumina supports with intermediate layers were used. The hydrogen permeances of the membranes varied from 5.2 x 10 exp(-8) to 3.9 x 10 exp(-6) mol/m2.s.Pa and the selectivity ranged from 200 to 1000 (H2/CO2) at 623 K, which allowed a broad set of conditions to be tested. Comparison studies with packed-bed reactor (PBR) and membrane reactor (MR) operation showed that higher ethanol conversions and hydrogen molar flows were obtained in the MRs for all pressures studied. It was determined that both hydrogen permeance and selectivity had a favourable effect on the EtOHSR reaction, with the highest ethanol conversion enhancement of 44% and hydrogen molar flow enhancement of 69% obtained in a MR fitted with a membrane with the highest hydrogen permeance. A criterion for the required permeance for industrial applications was developed, being 2.5 x 10 exp(-7) mol/m2.s.Pa for 1 cm diameter membrane tubes. |
Author | Gu, Yunfeng Lim, Hankwon Oyama, S. Ted |
Author_xml | – sequence: 1 givenname: Hankwon surname: Lim fullname: Lim, Hankwon organization: Environmental Catalysis and Nanomaterials Laboratory, Department of Chemical Engineering, Virginia Polytechnic Institute & State University, Blacksburg, VA 24061-0211, United States – sequence: 2 givenname: Yunfeng surname: Gu fullname: Gu, Yunfeng organization: Environmental Catalysis and Nanomaterials Laboratory, Department of Chemical Engineering, Virginia Polytechnic Institute & State University, Blacksburg, VA 24061-0211, United States – sequence: 3 givenname: S. Ted surname: Oyama fullname: Oyama, S. Ted email: oyama@vt.edu organization: Environmental Catalysis and Nanomaterials Laboratory, Department of Chemical Engineering, Virginia Polytechnic Institute & State University, Blacksburg, VA 24061-0211, United States |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=25650649$$DView record in Pascal Francis |
BookMark | eNqNkc2KFDEUhYOMYM_oGwhmI7ipMv-V2ggyqDMw4GKcdUglN91pqiptUqXMM_jSpq3BpbjKDXzn3sM5l-hiTjMg9JqSlhKq3h_bCabiYssIZS2hLSHiGdpR3fGGU8Yv0I7wTjUd1_oFuizlSAjtiO536Nf9svoIBaeAlwNgCAHccv6dMpSyZsB29vjw6HPaw4xPkCewswOc5k2wHOycRlwWsBPOEFKe4ryvk3VLrNDPuBzwyY6j9XGdmj_rShyjs81gC3hcvQ_ZzlBeoufBjgVePb1X6OHzp2_XN83d1y-31x_vGieYWhpKZc-oGhgNXEpB_dBxyp3opaYDl93gederQYWhl5Jp0IPXyjrRudA7xzy_Qu-2vaecvq9QFjPF4qA6nCGtxVChhCSKUf1fqOi1ZLSiYkNdTqXUIMwpx8nmR0OJOddkjmaryZxrMoSaWlOVvX26YIuzY6hJuFj-aplU1YroK_dm44JNxu5zZR7u6yJFCNGCSFWJDxsBNbsfEbKpt6BW5WOunRqf4r-t_AYn-7ZY |
CODEN | JMESDO |
CitedBy_id | crossref_primary_10_1016_j_energy_2019_06_073 crossref_primary_10_1016_j_ijhydene_2021_11_041 crossref_primary_10_7464_ksct_2014_20_4_425 crossref_primary_10_1002_er_3735 crossref_primary_10_1016_j_seppur_2017_05_027 crossref_primary_10_1093_ce_zkad014 crossref_primary_10_1016_j_ijhydene_2013_03_127 crossref_primary_10_1016_j_memsci_2020_118083 crossref_primary_10_1016_j_cherd_2015_03_002 crossref_primary_10_1016_j_ijhydene_2017_07_202 crossref_primary_10_1016_j_memsci_2016_12_023 crossref_primary_10_1016_j_memsci_2022_120326 crossref_primary_10_1016_j_seppur_2017_11_037 crossref_primary_10_1007_s11814_014_0359_x crossref_primary_10_1016_j_ijhydene_2016_12_153 crossref_primary_10_1002_ese3_183 crossref_primary_10_1021_acs_energyfuels_3c04026 crossref_primary_10_1016_j_ijhydene_2015_01_106 crossref_primary_10_1016_j_cattod_2013_02_024 crossref_primary_10_1016_j_seppur_2018_08_041 crossref_primary_10_1016_j_ijhydene_2018_09_184 crossref_primary_10_1016_j_ijhydene_2017_09_084 crossref_primary_10_1016_j_memsci_2014_08_029 crossref_primary_10_1016_j_ijhydene_2015_05_146 crossref_primary_10_1016_j_ijhydene_2012_11_010 crossref_primary_10_1016_j_ijhydene_2014_05_127 crossref_primary_10_1016_j_cattod_2015_11_006 crossref_primary_10_1016_j_ijhydene_2020_05_046 crossref_primary_10_1021_cr5003744 crossref_primary_10_1063_1674_0068_28_cjcp1412221 crossref_primary_10_1016_j_jngse_2016_08_019 crossref_primary_10_1016_j_ijhydene_2019_07_199 crossref_primary_10_1016_j_jiec_2021_08_029 crossref_primary_10_1016_j_ijhydene_2019_11_237 crossref_primary_10_1007_s10853_019_03660_z crossref_primary_10_1016_j_ijhydene_2018_08_087 crossref_primary_10_1016_j_memsci_2017_12_038 crossref_primary_10_3390_membranes10030050 crossref_primary_10_1111_jace_16594 crossref_primary_10_1039_C8EE01393D crossref_primary_10_3390_pr4020018 crossref_primary_10_7464_ksct_2013_19_4_379 crossref_primary_10_1080_00150193_2018_1458537 crossref_primary_10_1002_adma_202106785 crossref_primary_10_1016_j_seppur_2019_116340 crossref_primary_10_3390_molecules22010051 crossref_primary_10_1016_j_ijhydene_2018_06_110 crossref_primary_10_1252_jcej_22we044 |
Cites_doi | 10.1016/j.cattod.2005.03.066 10.1016/S1385-8947(02)00106-7 10.1016/j.apcata.2005.03.018 10.1002/adma.200602637 10.1016/j.memsci.2007.08.045 10.1016/j.memsci.2009.09.009 10.1016/j.memsci.2007.10.001 10.1016/S0376-7388(00)00448-8 10.1016/j.ijhydene.2010.11.020 10.1016/j.ijhydene.2010.10.101 10.1016/j.memsci.2011.03.057 10.1016/j.ijhydene.2010.03.136 10.1016/j.ijhydene.2009.11.076 10.1016/j.memsci.2004.06.046 10.1016/j.jcat.2003.12.008 10.1016/j.memsci.2007.10.025 10.1016/j.memsci.2007.09.063 10.1016/j.ijhydene.2010.01.035 10.1016/S0166-9834(00)84445-0 10.2202/1542-6580.1450 10.1016/S0376-7388(00)83041-0 10.1016/j.apcata.2005.03.013 10.1016/j.memsci.2010.01.042 10.1016/S0376-7388(00)83040-9 10.1016/j.ijhydene.2009.12.042 10.1002/aic.10215 10.1016/j.cej.2009.04.017 10.1016/S1003-9953(06)60011-X 10.1016/S0378-7753(00)00498-5 10.1023/B:TOCA.0000024927.26174.9b 10.1016/j.memsci.2009.03.040 10.1016/j.apcatb.2008.08.006 10.1016/j.memsci.2005.05.020 10.1016/j.memsci.2011.04.054 10.1016/j.ijhydene.2010.02.050 10.1016/j.ijhydene.2009.11.034 10.1627/jpi.46.93 |
ContentType | Journal Article |
Copyright | 2012 Elsevier B.V. 2015 INIST-CNRS |
Copyright_xml | – notice: 2012 Elsevier B.V. – notice: 2015 INIST-CNRS |
DBID | FBQ IQODW AAYXX CITATION 7QH 7UA C1K F1W H97 L.G |
DOI | 10.1016/j.memsci.2012.01.004 |
DatabaseName | AGRIS Pascal-Francis CrossRef Aqualine Water Resources Abstracts Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality Aquatic Science & Fisheries Abstracts (ASFA) Professional |
DatabaseTitle | CrossRef Aquatic Science & Fisheries Abstracts (ASFA) Professional Aqualine Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality ASFA: Aquatic Sciences and Fisheries Abstracts Water Resources Abstracts Environmental Sciences and Pollution Management |
DatabaseTitleList | Aquatic Science & Fisheries Abstracts (ASFA) Professional Aquatic Science & Fisheries Abstracts (ASFA) Professional |
Database_xml | – sequence: 1 dbid: FBQ name: AGRIS url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry |
EISSN | 1873-3123 |
EndPage | 127 |
ExternalDocumentID | 10_1016_j_memsci_2012_01_004 25650649 US201600084056 S0376738812000117 |
GroupedDBID | --- --K --M -~X .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ 9JN AABNK AABXZ AACTN AAEDT AAEDW AAEPC AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABFNM ABJNI ABMAC ABNUV ABXDB ABXRA ABYKQ ACDAQ ACGFS ACNNM ACRLP ADBBV ADEWK ADEZE ADMUD AEBSH AEKER AENEX AEZYN AFKWA AFRZQ AFTJW AGHFR AGUBO AGYEJ AHHHB AHPOS AIEXJ AIKHN AITUG AJBFU AJOXV AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG ENUVR EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA HZ~ IHE J1W KOM LX7 M41 MAGPM MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG RNS ROL RPZ SCC SDF SDG SDP SES SPC SPCBC SSG SSM SSZ T5K XPP Y6R ZMT ~G- 29L AAQXK ABPIF ABPTK AI. ASPBG AVWKF AZFZN BBWZM EJD FBQ FEDTE FGOYB HLY HVGLF NDZJH R2- SCE SEW VH1 WUQ 8W4 AALMO ADALY IPNFZ IQODW AAHBH AAXKI AAYXX AFJKZ AKRWK CITATION 7QH 7UA C1K F1W H97 L.G |
ID | FETCH-LOGICAL-c426t-1159216b21f35541db7313c49581b357bd3796b6fb95528e8bd86ac47cf9cc2d3 |
IEDL.DBID | AIKHN |
ISSN | 0376-7388 |
IngestDate | Fri Oct 25 03:02:39 EDT 2024 Fri Oct 25 01:28:53 EDT 2024 Thu Sep 26 15:53:15 EDT 2024 Thu Nov 24 18:35:10 EST 2022 Wed Dec 27 19:09:25 EST 2023 Fri Feb 23 02:27:59 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Membrane reactor Silica–alumina membranes Ethanol steam reforming PdCu membranes Permeance Selectivity Commercialization Binary compound Support Hydrogen Industrial application Alcohol Porous material Silica Composite material Alkanol Membrane Platinoid Silica-alumina membranes Diameter Aluminium oxide Packed bed Ethanol Transition metal Palladium Conversion Silicon oxides Steam reforming Alumina |
Language | English |
License | CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c426t-1159216b21f35541db7313c49581b357bd3796b6fb95528e8bd86ac47cf9cc2d3 |
Notes | http://dx.doi.org/10.1016/j.memsci.2012.01.004 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 1464498521 |
PQPubID | 23462 |
PageCount | 9 |
ParticipantIDs | proquest_miscellaneous_1464506218 proquest_miscellaneous_1464498521 crossref_primary_10_1016_j_memsci_2012_01_004 pascalfrancis_primary_25650649 fao_agris_US201600084056 elsevier_sciencedirect_doi_10_1016_j_memsci_2012_01_004 |
PublicationCentury | 2000 |
PublicationDate | 2012-04-01 |
PublicationDateYYYYMMDD | 2012-04-01 |
PublicationDate_xml | – month: 04 year: 2012 text: 2012-04-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Amsterdam |
PublicationPlace_xml | – name: Amsterdam |
PublicationTitle | Journal of membrane science |
PublicationYear | 2012 |
Publisher | Elsevier B.V Elsevier |
Publisher_xml | – name: Elsevier B.V – name: Elsevier |
References | Yoshino, Suzuki, Nair, Taguchi, Itoh (bib0225) 2005; 267 (bib0005) 2011 Irusta, Munera, Carrara, Lombardo, Cornaglia (bib0075) 2005; 287 Hacarlioglu, Gu, Oyama (bib0080) 2006; 15 Smith, Shantha (bib0050) 2007; 5 Basile, Pinacci, Iulianelli, Broglia, Drago, Liguori, Longo, Calabrò (bib0055) 2011; 36 Roa, Way, McCormick, Paglieri (bib0155) 2003; 93 Tong, Matsumura (bib0090) 2005; 286 Boudart (bib0185) 1997 Basile, Gallucci, Paturzo (bib0100) 2005; 104 Iulianelli, Basile (bib0135) 2010; 35 Oyama (bib0010) 2011 Yun, Oyama (bib0015) 2011; 375 Tosti, Basile, Borgognoni, Capaldo, Cordiner, Di Cave, Gallucci, Rizzello, Santucci, Traversa (bib0120) 2008; 308 Yu, Lee, Park, Lee, Lee (bib0130) 2009; 86 Y.H. Ma, P.P. Mardilovich, Y. She, Hydrogen gas-extraction module and method of fabrication, US Patent 6,152,987 (2000), Assignee: Worcester Polytechnic Institute, Worcester, MA. Tosti, Basile, Borgognoni, Capaldo, Cordiner, Di Cave, Gallucci, Rizzello, Santucci, Traversa (bib0125) 2008; 308 Uemiya, Sato, Ando, Matsuda, Kikuchi (bib0095) 1991; 67 Lim, Oyama (bib0165) 2011; 378 Gallucci, Van Sintannaland, Kuipers (bib0045) 2010; 35 Gu, Hacarlioglu, Oyama (bib0175) 2008; 310 S.T. Oyama, Y. Gu, D. Lee, Hydrogen-selective silica-based membrane, US Patent 7,179,325 (2007), Assignee: Virginia Tech Intellectual Properties, Inc., Blacksburg, VA. Uemiya, Matsuda, Kikuchi (bib0210) 1991; 56 Lim, Gu, Oyama (bib0115) 2010; 351 Uemiya, Sato, Ando, Kude, Matsuda, Kikuchi (bib0215) 1991; 56 Khativ, de Souza, Noronha, Oyama (bib0150) 2011 Oyama, Hacarlioglu (bib0025) 2009; 337 Gu, Oyama (bib0180) 2009; 345 Prabhu, Oyama (bib0065) 2000; 176 Weisz (bib0220) 1982 Llorca, Homs, Sales, Fierro, de la Piscina (bib0190) 2004; 222 Oyama, Lim (bib0020) 2009; 151 Lee, Hacarlioglu, Oyama (bib0070) 2004; 29 Gu, Oyama (bib0170) 2007; 306 Iulianelli, Liguori, Longo, Tosti, Pinacci, Basile (bib0140) 2010; 35 Gu, Oyama (bib0200) 2007; 19 Kikuchi, Kawabe, Matsukata (bib0105) 2003; 46 Lee, Mogi, Lee, Kim (bib0030) 2011; 36 Tsuru, Yamaguchi, Yoshioka, Asaeda (bib0085) 2004; 50 Oyama, Lee, Hacarlioglu, Saraf (bib0205) 2004; 244 Papadias, Lee, Ferrandon, Ahmed (bib0145) 2010; 35 Birdsell, Willms, Dye (bib0110) 1997 Ioannides (bib0060) 2001; 92 Rakib, Grace, Lim, Elnashaie, Ghiasi (bib0035) 2010; 35 Basile, Campanari, Manzolini, Iulianelli, Longo, Liguori, De Falco, Piemonte (bib0040) 2011; 36 Iarikov, Hacarlioglu, Oyama (bib0230) 2011 Oyama (10.1016/j.memsci.2012.01.004_bib0025) 2009; 337 Uemiya (10.1016/j.memsci.2012.01.004_bib0215) 1991; 56 Tosti (10.1016/j.memsci.2012.01.004_bib0120) 2008; 308 Yu (10.1016/j.memsci.2012.01.004_bib0130) 2009; 86 Uemiya (10.1016/j.memsci.2012.01.004_bib0210) 1991; 56 Hacarlioglu (10.1016/j.memsci.2012.01.004_bib0080) 2006; 15 Iulianelli (10.1016/j.memsci.2012.01.004_bib0135) 2010; 35 Irusta (10.1016/j.memsci.2012.01.004_bib0075) 2005; 287 10.1016/j.memsci.2012.01.004_bib0195 Gu (10.1016/j.memsci.2012.01.004_bib0175) 2008; 310 Gu (10.1016/j.memsci.2012.01.004_bib0200) 2007; 19 Oyama (10.1016/j.memsci.2012.01.004_bib0205) 2004; 244 (10.1016/j.memsci.2012.01.004_bib0005) 2011 Lim (10.1016/j.memsci.2012.01.004_bib0165) 2011; 378 Tong (10.1016/j.memsci.2012.01.004_bib0090) 2005; 286 Uemiya (10.1016/j.memsci.2012.01.004_bib0095) 1991; 67 Ioannides (10.1016/j.memsci.2012.01.004_bib0060) 2001; 92 Basile (10.1016/j.memsci.2012.01.004_bib0100) 2005; 104 Weisz (10.1016/j.memsci.2012.01.004_bib0220) 1982 Lee (10.1016/j.memsci.2012.01.004_bib0030) 2011; 36 Lee (10.1016/j.memsci.2012.01.004_bib0070) 2004; 29 Papadias (10.1016/j.memsci.2012.01.004_bib0145) 2010; 35 Iulianelli (10.1016/j.memsci.2012.01.004_bib0140) 2010; 35 Birdsell (10.1016/j.memsci.2012.01.004_bib0110) 1997 Roa (10.1016/j.memsci.2012.01.004_bib0155) 2003; 93 Tsuru (10.1016/j.memsci.2012.01.004_bib0085) 2004; 50 Gu (10.1016/j.memsci.2012.01.004_bib0180) 2009; 345 Yoshino (10.1016/j.memsci.2012.01.004_bib0225) 2005; 267 Iarikov (10.1016/j.memsci.2012.01.004_bib0230) 2011 Gallucci (10.1016/j.memsci.2012.01.004_bib0045) 2010; 35 Smith (10.1016/j.memsci.2012.01.004_bib0050) 2007; 5 10.1016/j.memsci.2012.01.004_bib0160 Tosti (10.1016/j.memsci.2012.01.004_bib0125) 2008; 308 Oyama (10.1016/j.memsci.2012.01.004_bib0020) 2009; 151 Kikuchi (10.1016/j.memsci.2012.01.004_bib0105) 2003; 46 Gu (10.1016/j.memsci.2012.01.004_bib0170) 2007; 306 Khativ (10.1016/j.memsci.2012.01.004_bib0150) 2011 Oyama (10.1016/j.memsci.2012.01.004_bib0010) 2011 Prabhu (10.1016/j.memsci.2012.01.004_bib0065) 2000; 176 Basile (10.1016/j.memsci.2012.01.004_bib0040) 2011; 36 Lim (10.1016/j.memsci.2012.01.004_bib0115) 2010; 351 Boudart (10.1016/j.memsci.2012.01.004_bib0185) 1997 Rakib (10.1016/j.memsci.2012.01.004_bib0035) 2010; 35 Basile (10.1016/j.memsci.2012.01.004_bib0055) 2011; 36 Yun (10.1016/j.memsci.2012.01.004_bib0015) 2011; 375 Llorca (10.1016/j.memsci.2012.01.004_bib0190) 2004; 222 |
References_xml | – volume: 50 start-page: 2794 year: 2004 end-page: 2805 ident: bib0085 article-title: Methane steam reforming by microporous catalytic membrane reactors publication-title: AICHE J. contributor: fullname: Asaeda – start-page: 424 year: 1982 end-page: 425 ident: bib0220 article-title: The science of the possible publication-title: Chem. Tech. contributor: fullname: Weisz – volume: 56 start-page: 303 year: 1991 end-page: 313 ident: bib0215 article-title: Separation of hydrogen through palladium thin film supported on a porous glass tube publication-title: J. Membr. Sci. contributor: fullname: Kikuchi – volume: 375 start-page: 28 year: 2011 end-page: 45 ident: bib0015 article-title: Correlations in palladium membranes for hydrogen separation: a review publication-title: J. Membr. Sci. contributor: fullname: Oyama – volume: 35 start-page: 7142 year: 2010 end-page: 7150 ident: bib0045 article-title: Theoretical comparison of packed bed and fluidized bed membrane reactors for methane reforming publication-title: Int. J. Hydrogen Energy contributor: fullname: Kuipers – volume: 286 start-page: 226 year: 2005 end-page: 231 ident: bib0090 article-title: Effect of catalytic activity on methane steam reforming in hydrogen-permeable membrane reactor publication-title: Appl. Catal. A: Gen. contributor: fullname: Matsumura – volume: 29 start-page: 45 year: 2004 end-page: 57 ident: bib0070 article-title: The effect of pressure in membrane reactors: trade-off in permeability and equilibrium conversion in the catalytic reforming of CH publication-title: Top. Catal. contributor: fullname: Oyama – volume: 308 start-page: 258 year: 2008 end-page: 263 ident: bib0125 article-title: Low-temperature ethanol steam reforming in a Pd–Ag membrane reactor. Part 2. Pt-based and Ni-based catalysts and general comparison publication-title: J. Membr. Sci. contributor: fullname: Traversa – volume: 93 start-page: 11 year: 2003 end-page: 22 ident: bib0155 article-title: Preparation and characterization of Pd–Cu composite membranes for hydrogen separation publication-title: Chem. Eng. J. contributor: fullname: Paglieri – volume: 36 start-page: 2029 year: 2011 end-page: 2037 ident: bib0055 article-title: Ethanol steam reforming reaction in a porous stainless steel supported palladium membrane reactor publication-title: Int. J. Hydrogen Energy contributor: fullname: Calabrò – volume: 36 start-page: 1897 year: 2011 end-page: 1902 ident: bib0030 article-title: Prioritizing the weights of hydrogen energy technologies in the sector of the hydrogen economy by using a fuzzy AHP approach publication-title: Int. J. Hydrogen Energy contributor: fullname: Kim – volume: 176 start-page: 233 year: 2000 end-page: 248 ident: bib0065 article-title: Highly hydrogen selective ceramic membranes: application to the transformation of greenhouse gases publication-title: J. Membr. Sci. contributor: fullname: Oyama – volume: 378 start-page: 179 year: 2011 end-page: 185 ident: bib0165 article-title: Hydrogen selective thin palladium–copper composite membranes on alumina supports publication-title: J. Membr. Sci. contributor: fullname: Oyama – volume: 306 start-page: 216 year: 2007 end-page: 227 ident: bib0170 article-title: Ultra-thin, hydrogen-selective silica membranes deposited on alumina graded structures prepared from size-controlled boehmite sols publication-title: J. Membr. Sci. contributor: fullname: Oyama – volume: 92 start-page: 17 year: 2001 end-page: 25 ident: bib0060 article-title: Thermodynamic analysis of ethanol processors for fuel cell applications publication-title: J. Power Sources contributor: fullname: Ioannides – volume: 56 start-page: 315 year: 1991 end-page: 325 ident: bib0210 article-title: Hydrogen permeable palladium–silver alloy membrane supported on porous ceramics publication-title: J. Membr. Sci. contributor: fullname: Kikuchi – volume: 36 start-page: 1531 year: 2011 end-page: 1539 ident: bib0040 article-title: Methane steam reforming in a Pd–Ag membrane reformer: an experimental study on reaction pressure influence at middle temperature publication-title: Int. J. Hydrogen Energy contributor: fullname: Piemonte – volume: 35 start-page: 2004 year: 2010 end-page: 2017 ident: bib0145 article-title: An analytical and experimental investigation of high-pressure catalytic steam reforming of ethanol in a hydrogen selective membrane reactor publication-title: Int. J. Hydrogen Energy contributor: fullname: Ahmed – volume: 15 start-page: 73 year: 2006 end-page: 81 ident: bib0080 article-title: Studies of the methane steam reforming reaction at high pressure in a ceramic membrane reactor publication-title: J. Nat. Gas Chem. contributor: fullname: Oyama – volume: 86 start-page: 121 year: 2009 end-page: 126 ident: bib0130 article-title: Ethanol steam reforming in a membrane reactor with Pt-impregnated Knudsen membranes publication-title: Appl. Catal. B: Environ. contributor: fullname: Lee – volume: 345 start-page: 267 year: 2009 end-page: 275 ident: bib0180 article-title: Permeation properties and hydrothermal stability of silica–titania membranes supported on porous alumina substrates publication-title: J. Membr. Sci. contributor: fullname: Oyama – start-page: 25 year: 2011 end-page: 60 ident: bib0150 article-title: Review of silica membranes for hydrogen separation prepared by chemical vapor deposition (CVD) publication-title: Inorganic, Polymeric, and Composite Membranes: Structure-Function and other Correlations contributor: fullname: Oyama – volume: 308 start-page: 250 year: 2008 end-page: 257 ident: bib0120 article-title: Low temperature ethanol steam reforming in a Pd–Ag membrane reactor: Part 1: Ru-based catalyst publication-title: J. Membr. Sci. contributor: fullname: Traversa – year: 2011 ident: bib0005 publication-title: Inorganic, Polymeric, and Composite Membranes: Structure-Function and other Correlations – volume: 46 start-page: 93 year: 2003 end-page: 98 ident: bib0105 article-title: Steam reforming of methanol on Ni/Al publication-title: J. Jpn. Petrol. Inst. contributor: fullname: Matsukata – volume: 67 start-page: 223 year: 1991 end-page: 230 ident: bib0095 article-title: Steam reforming of methane in a hydrogen-permeable membrane reactor publication-title: Appl. Catal. contributor: fullname: Kikuchi – volume: 244 start-page: 45 year: 2004 end-page: 53 ident: bib0205 article-title: High permeability in a nonporous system: theory of hydrogen permeability in dense silica membranes publication-title: J. Membr. Sci. contributor: fullname: Saraf – volume: 35 start-page: 3170 year: 2010 end-page: 3177 ident: bib0135 article-title: An experimental study on bio-ethanol steam reforming in a catalytic membrane reactor. Part I: Temperature and sweep-gas flow configuration effects publication-title: Int. J. Hydrogen Energy contributor: fullname: Basile – volume: 267 start-page: 8 year: 2005 end-page: 17 ident: bib0225 article-title: Development of tubular substrates, silica based membranes and membrane modules for hydrogen separation at high temperature publication-title: J. Membr. Sci. contributor: fullname: Itoh – volume: 337 start-page: 188 year: 2009 end-page: 199 ident: bib0025 article-title: The boundary between simple and complex descriptions of membrane reactors: the transition between 1-D and 2-D analysis publication-title: J. Membr. Sci. contributor: fullname: Hacarlioglu – volume: 19 start-page: 1636 year: 2007 end-page: 1640 ident: bib0200 article-title: High molecular permeance in a pore-less ceramic membrane publication-title: Adv. Mater. contributor: fullname: Oyama – volume: 151 start-page: 351 year: 2009 end-page: 358 ident: bib0020 article-title: An operability level coefficient (OLC) as a useful tool for correlating the performance of membrane reactors publication-title: Chem. Eng. Sci. contributor: fullname: Lim – volume: 310 start-page: 28 year: 2008 end-page: 37 ident: bib0175 article-title: Hydrothermally-stable silica–alumina composite membranes for hydrogen separation publication-title: J. Membr. Sci. contributor: fullname: Oyama – volume: 35 start-page: 3159 year: 2010 end-page: 3164 ident: bib0140 article-title: An experimental study on bio-ethanol steam reforming in a catalytic membrane reactor. Part II: Reaction pressure, sweep factor and WHSV effects publication-title: Int. J. Hydrogen Energy contributor: fullname: Basile – volume: 351 start-page: 149 year: 2010 end-page: 159 ident: bib0115 article-title: Reaction of primary and secondary products in a membrane reactor: studies of ethanol steam reforming with a silica–alumina composite membrane publication-title: J. Membr. Sci. contributor: fullname: Oyama – volume: 104 start-page: 244 year: 2005 end-page: 250 ident: bib0100 article-title: A dense Pd/Ag membrane reactor for methanol steam reforming: experimental study publication-title: Catal. Today contributor: fullname: Paturzo – start-page: 1 year: 2011 end-page: 24 ident: bib0010 article-title: Correlations publication-title: Inorganic, Polymeric, and Composite Membranes: Structure-Function and other Correlations contributor: fullname: Oyama – volume: 5 start-page: A84 year: 2007 ident: bib0050 article-title: Membrane reactor based hydrogen separation from biomass gas: a review of technical advancements and prospects publication-title: Int. J. Chem. Reactor Eng. contributor: fullname: Shantha – start-page: 94 year: 1997 ident: bib0185 article-title: Surface time yield of membrane reactors publication-title: Cattech contributor: fullname: Boudart – volume: 222 start-page: 470 year: 2004 end-page: 480 ident: bib0190 article-title: Effect of sodium addition on the performance of Co–ZnO-based catalysts for hydrogen production from bioethanol publication-title: J. Catal. contributor: fullname: de la Piscina – volume: 35 start-page: 6276 year: 2010 end-page: 6290 ident: bib0035 article-title: Steam reforming of propane in a fluidized bed membrane reactor for hydrogen production publication-title: Int. J. Hydrogen Energy contributor: fullname: Ghiasi – start-page: 61 year: 2011 end-page: 78 ident: bib0230 article-title: Amorphous silica membranes for H publication-title: Inorganic, Polymeric, and Composite Membranes: Structure-Function and other Correlations contributor: fullname: Oyama – volume: 287 start-page: 147 year: 2005 end-page: 158 ident: bib0075 article-title: A stable, novel catalyst improves hydrogen production in a membrane reactor publication-title: Appl. Catal. A: Gen. contributor: fullname: Cornaglia – start-page: 1942 year: 1997 end-page: 1946 ident: bib0110 article-title: Pure hydrogen production from octane, ethanol, methanol, and methane reforming using a palladium membrane reactor publication-title: Proceedings of the Intersociety Energy Conversion Engineering Conference, vol. 32 contributor: fullname: Dye – volume: 104 start-page: 244 year: 2005 ident: 10.1016/j.memsci.2012.01.004_bib0100 article-title: A dense Pd/Ag membrane reactor for methanol steam reforming: experimental study publication-title: Catal. Today doi: 10.1016/j.cattod.2005.03.066 contributor: fullname: Basile – volume: 93 start-page: 11 year: 2003 ident: 10.1016/j.memsci.2012.01.004_bib0155 article-title: Preparation and characterization of Pd–Cu composite membranes for hydrogen separation publication-title: Chem. Eng. J. doi: 10.1016/S1385-8947(02)00106-7 contributor: fullname: Roa – ident: 10.1016/j.memsci.2012.01.004_bib0195 – volume: 287 start-page: 147 year: 2005 ident: 10.1016/j.memsci.2012.01.004_bib0075 article-title: A stable, novel catalyst improves hydrogen production in a membrane reactor publication-title: Appl. Catal. A: Gen. doi: 10.1016/j.apcata.2005.03.018 contributor: fullname: Irusta – volume: 19 start-page: 1636 year: 2007 ident: 10.1016/j.memsci.2012.01.004_bib0200 article-title: High molecular permeance in a pore-less ceramic membrane publication-title: Adv. Mater. doi: 10.1002/adma.200602637 contributor: fullname: Gu – year: 2011 ident: 10.1016/j.memsci.2012.01.004_bib0005 – volume: 306 start-page: 216 year: 2007 ident: 10.1016/j.memsci.2012.01.004_bib0170 article-title: Ultra-thin, hydrogen-selective silica membranes deposited on alumina graded structures prepared from size-controlled boehmite sols publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2007.08.045 contributor: fullname: Gu – volume: 345 start-page: 267 year: 2009 ident: 10.1016/j.memsci.2012.01.004_bib0180 article-title: Permeation properties and hydrothermal stability of silica–titania membranes supported on porous alumina substrates publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2009.09.009 contributor: fullname: Gu – volume: 308 start-page: 250 year: 2008 ident: 10.1016/j.memsci.2012.01.004_bib0120 article-title: Low temperature ethanol steam reforming in a Pd–Ag membrane reactor: Part 1: Ru-based catalyst publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2007.10.001 contributor: fullname: Tosti – volume: 176 start-page: 233 year: 2000 ident: 10.1016/j.memsci.2012.01.004_bib0065 article-title: Highly hydrogen selective ceramic membranes: application to the transformation of greenhouse gases publication-title: J. Membr. Sci. doi: 10.1016/S0376-7388(00)00448-8 contributor: fullname: Prabhu – start-page: 1 year: 2011 ident: 10.1016/j.memsci.2012.01.004_bib0010 article-title: Correlations contributor: fullname: Oyama – volume: 36 start-page: 2029 year: 2011 ident: 10.1016/j.memsci.2012.01.004_bib0055 article-title: Ethanol steam reforming reaction in a porous stainless steel supported palladium membrane reactor publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2010.11.020 contributor: fullname: Basile – volume: 36 start-page: 1531 year: 2011 ident: 10.1016/j.memsci.2012.01.004_bib0040 article-title: Methane steam reforming in a Pd–Ag membrane reformer: an experimental study on reaction pressure influence at middle temperature publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2010.10.101 contributor: fullname: Basile – volume: 375 start-page: 28 year: 2011 ident: 10.1016/j.memsci.2012.01.004_bib0015 article-title: Correlations in palladium membranes for hydrogen separation: a review publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2011.03.057 contributor: fullname: Yun – volume: 35 start-page: 6276 year: 2010 ident: 10.1016/j.memsci.2012.01.004_bib0035 article-title: Steam reforming of propane in a fluidized bed membrane reactor for hydrogen production publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2010.03.136 contributor: fullname: Rakib – volume: 35 start-page: 3170 year: 2010 ident: 10.1016/j.memsci.2012.01.004_bib0135 article-title: An experimental study on bio-ethanol steam reforming in a catalytic membrane reactor. Part I: Temperature and sweep-gas flow configuration effects publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2009.11.076 contributor: fullname: Iulianelli – volume: 244 start-page: 45 year: 2004 ident: 10.1016/j.memsci.2012.01.004_bib0205 article-title: High permeability in a nonporous system: theory of hydrogen permeability in dense silica membranes publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2004.06.046 contributor: fullname: Oyama – volume: 222 start-page: 470 year: 2004 ident: 10.1016/j.memsci.2012.01.004_bib0190 article-title: Effect of sodium addition on the performance of Co–ZnO-based catalysts for hydrogen production from bioethanol publication-title: J. Catal. doi: 10.1016/j.jcat.2003.12.008 contributor: fullname: Llorca – start-page: 424 issue: July year: 1982 ident: 10.1016/j.memsci.2012.01.004_bib0220 article-title: The science of the possible publication-title: Chem. Tech. contributor: fullname: Weisz – volume: 310 start-page: 28 year: 2008 ident: 10.1016/j.memsci.2012.01.004_bib0175 article-title: Hydrothermally-stable silica–alumina composite membranes for hydrogen separation publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2007.10.025 contributor: fullname: Gu – start-page: 1942 year: 1997 ident: 10.1016/j.memsci.2012.01.004_bib0110 article-title: Pure hydrogen production from octane, ethanol, methanol, and methane reforming using a palladium membrane reactor contributor: fullname: Birdsell – volume: 308 start-page: 258 year: 2008 ident: 10.1016/j.memsci.2012.01.004_bib0125 article-title: Low-temperature ethanol steam reforming in a Pd–Ag membrane reactor. Part 2. Pt-based and Ni-based catalysts and general comparison publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2007.09.063 contributor: fullname: Tosti – volume: 36 start-page: 1897 year: 2011 ident: 10.1016/j.memsci.2012.01.004_bib0030 article-title: Prioritizing the weights of hydrogen energy technologies in the sector of the hydrogen economy by using a fuzzy AHP approach publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2010.01.035 contributor: fullname: Lee – volume: 67 start-page: 223 year: 1991 ident: 10.1016/j.memsci.2012.01.004_bib0095 article-title: Steam reforming of methane in a hydrogen-permeable membrane reactor publication-title: Appl. Catal. doi: 10.1016/S0166-9834(00)84445-0 contributor: fullname: Uemiya – volume: 5 start-page: A84 year: 2007 ident: 10.1016/j.memsci.2012.01.004_bib0050 article-title: Membrane reactor based hydrogen separation from biomass gas: a review of technical advancements and prospects publication-title: Int. J. Chem. Reactor Eng. doi: 10.2202/1542-6580.1450 contributor: fullname: Smith – start-page: 25 year: 2011 ident: 10.1016/j.memsci.2012.01.004_bib0150 article-title: Review of silica membranes for hydrogen separation prepared by chemical vapor deposition (CVD) contributor: fullname: Khativ – start-page: 94 issue: December year: 1997 ident: 10.1016/j.memsci.2012.01.004_bib0185 article-title: Surface time yield of membrane reactors publication-title: Cattech contributor: fullname: Boudart – volume: 56 start-page: 315 year: 1991 ident: 10.1016/j.memsci.2012.01.004_bib0210 article-title: Hydrogen permeable palladium–silver alloy membrane supported on porous ceramics publication-title: J. Membr. Sci. doi: 10.1016/S0376-7388(00)83041-0 contributor: fullname: Uemiya – volume: 286 start-page: 226 year: 2005 ident: 10.1016/j.memsci.2012.01.004_bib0090 article-title: Effect of catalytic activity on methane steam reforming in hydrogen-permeable membrane reactor publication-title: Appl. Catal. A: Gen. doi: 10.1016/j.apcata.2005.03.013 contributor: fullname: Tong – volume: 351 start-page: 149 year: 2010 ident: 10.1016/j.memsci.2012.01.004_bib0115 article-title: Reaction of primary and secondary products in a membrane reactor: studies of ethanol steam reforming with a silica–alumina composite membrane publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2010.01.042 contributor: fullname: Lim – volume: 56 start-page: 303 year: 1991 ident: 10.1016/j.memsci.2012.01.004_bib0215 article-title: Separation of hydrogen through palladium thin film supported on a porous glass tube publication-title: J. Membr. Sci. doi: 10.1016/S0376-7388(00)83040-9 contributor: fullname: Uemiya – volume: 35 start-page: 2004 year: 2010 ident: 10.1016/j.memsci.2012.01.004_bib0145 article-title: An analytical and experimental investigation of high-pressure catalytic steam reforming of ethanol in a hydrogen selective membrane reactor publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2009.12.042 contributor: fullname: Papadias – volume: 50 start-page: 2794 year: 2004 ident: 10.1016/j.memsci.2012.01.004_bib0085 article-title: Methane steam reforming by microporous catalytic membrane reactors publication-title: AICHE J. doi: 10.1002/aic.10215 contributor: fullname: Tsuru – volume: 151 start-page: 351 year: 2009 ident: 10.1016/j.memsci.2012.01.004_bib0020 article-title: An operability level coefficient (OLC) as a useful tool for correlating the performance of membrane reactors publication-title: Chem. Eng. Sci. doi: 10.1016/j.cej.2009.04.017 contributor: fullname: Oyama – volume: 15 start-page: 73 year: 2006 ident: 10.1016/j.memsci.2012.01.004_bib0080 article-title: Studies of the methane steam reforming reaction at high pressure in a ceramic membrane reactor publication-title: J. Nat. Gas Chem. doi: 10.1016/S1003-9953(06)60011-X contributor: fullname: Hacarlioglu – start-page: 61 year: 2011 ident: 10.1016/j.memsci.2012.01.004_bib0230 article-title: Amorphous silica membranes for H2 separation prepared by chemical vapor deposition on hollow fiber supports contributor: fullname: Iarikov – volume: 92 start-page: 17 year: 2001 ident: 10.1016/j.memsci.2012.01.004_bib0060 article-title: Thermodynamic analysis of ethanol processors for fuel cell applications publication-title: J. Power Sources doi: 10.1016/S0378-7753(00)00498-5 contributor: fullname: Ioannides – volume: 29 start-page: 45 year: 2004 ident: 10.1016/j.memsci.2012.01.004_bib0070 article-title: The effect of pressure in membrane reactors: trade-off in permeability and equilibrium conversion in the catalytic reforming of CH4 with CO2 at high pressure publication-title: Top. Catal. doi: 10.1023/B:TOCA.0000024927.26174.9b contributor: fullname: Lee – volume: 337 start-page: 188 year: 2009 ident: 10.1016/j.memsci.2012.01.004_bib0025 article-title: The boundary between simple and complex descriptions of membrane reactors: the transition between 1-D and 2-D analysis publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2009.03.040 contributor: fullname: Oyama – volume: 86 start-page: 121 year: 2009 ident: 10.1016/j.memsci.2012.01.004_bib0130 article-title: Ethanol steam reforming in a membrane reactor with Pt-impregnated Knudsen membranes publication-title: Appl. Catal. B: Environ. doi: 10.1016/j.apcatb.2008.08.006 contributor: fullname: Yu – ident: 10.1016/j.memsci.2012.01.004_bib0160 – volume: 267 start-page: 8 year: 2005 ident: 10.1016/j.memsci.2012.01.004_bib0225 article-title: Development of tubular substrates, silica based membranes and membrane modules for hydrogen separation at high temperature publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2005.05.020 contributor: fullname: Yoshino – volume: 378 start-page: 179 year: 2011 ident: 10.1016/j.memsci.2012.01.004_bib0165 article-title: Hydrogen selective thin palladium–copper composite membranes on alumina supports publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2011.04.054 contributor: fullname: Lim – volume: 35 start-page: 7142 year: 2010 ident: 10.1016/j.memsci.2012.01.004_bib0045 article-title: Theoretical comparison of packed bed and fluidized bed membrane reactors for methane reforming publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2010.02.050 contributor: fullname: Gallucci – volume: 35 start-page: 3159 year: 2010 ident: 10.1016/j.memsci.2012.01.004_bib0140 article-title: An experimental study on bio-ethanol steam reforming in a catalytic membrane reactor. Part II: Reaction pressure, sweep factor and WHSV effects publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2009.11.034 contributor: fullname: Iulianelli – volume: 46 start-page: 93 year: 2003 ident: 10.1016/j.memsci.2012.01.004_bib0105 article-title: Steam reforming of methanol on Ni/Al2O3 catalyst in a Pd-membrane reactor publication-title: J. Jpn. Petrol. Inst. doi: 10.1627/jpi.46.93 contributor: fullname: Kikuchi |
SSID | ssj0017089 |
Score | 2.3343935 |
Snippet | The performance of membrane reactors fitted with silica-based and palladium-based membranes with hydrogen permeances of 10−8–10−6molm−2s−1Pa−1 was studied and... The effects of hydrogen permeance and selectivity in the performance of membrane reactors for the ethanol steam reforming (EtOHSR) were studied at 1–10atm and... The effects of hydrogen permeance and selectivity in the performance of membrane reactors for the ethanol steam reforming (EtOHSR) were studied at 1-10 atm and... The effects of hydrogen permeance and selectivity on the performance of membrane reactors for ethanol steam reforming (EtOHSR) were studied at 1-10 atm and 623... |
SourceID | proquest crossref pascalfrancis fao elsevier |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 119 |
SubjectTerms | aluminum oxide artificial membranes Chemistry Colloidal state and disperse state Commercialization ethanol Ethanol steam reforming Exact sciences and technology General and physical chemistry hydrogen industrial applications Membrane reactor Membranes PdCu membranes Permeance Porous materials Selectivity Silica–alumina membranes steam |
Title | Studies of the effect of pressure and hydrogen permeance on the ethanol steam reforming reaction with palladium- and silica-based membranes |
URI | https://dx.doi.org/10.1016/j.memsci.2012.01.004 https://search.proquest.com/docview/1464498521 https://search.proquest.com/docview/1464506218 |
Volume | 396 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB51txc4ICigbqErV-rV7Np5ODlWFdVC1V7alXqz7Ngui9hktY8DF_4Af5qZOKmoikDilkS25XgmM984n2cATqfWOnTcCU9DYXiqTMqNFxUvfCatT0WQlgLFq-t8Nk8_32V3e3Den4UhWmVn-6NNb61192TSreZktVhMbqaUiCQp0EO1wEYNYB_dkSyGsH_26XJ2_fAzQU3bSnjUnlOH_gRdS_Na-iWOThwv2ebv7Cq2_cFDDYJpiDppNrh6IZa9eGLBW7d08RJedHiSncUpv4I9Xx_A89-yDL6Gnx1XkDWBIdxjkcJBdy0Jdrf2zNSOffnu1g2qE1uhsfakDKypYwfaXm--MVKIJcMJN0SgucereCqC0WYuW9GWvFvslrwdbrOg7UBOXtIxfH2MytGqvoH5xcfb8xnvajDwCn33liNgLKXIrRSBkIlwViUiqTCsQrybZMq6RJW5zYMts0wWvrCuyE2VqiqUVSVd8haGdVP7Q2ChlN4h4DMKg1IrJFpWkauQkREJlZMj4P2661VMtaF7DtpXHeWkSU56KjR2GoHqhaMfqYxGb_CPnocoS23u0Y7q-Y2kLHtUWADB4AjGjwT8MBOEhpTbrxzBSS9xjV8i_V7B5Wt2Gwqi0rQsEA_9vQ0Og7jq6L9n_w6e0V2kD72H4Xa988eIjLZ2DIMPP8S40_9f2g8NcQ |
link.rule.ids | 315,783,787,4509,24128,27936,27937,45597,45691 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB7xOLQ9VH2KpZS6Uq_Wrp2HkyNCoKXAXmAlbpYd23RRN1nt48Bv4E8zEyeoqFUr9ZaXLcdjz3xjf54B-Day1qHhTngaCsNTZVJuvKh44TNpfSqCtOQoXk7y8TT9fpPdbMFxfxaGaJWd7o86vdXW3ZNh15vDxWw2vBpRIJKkQAvVAhu1DbuIBkqcnbtHZ-fjydNmghq1mfDoe04F-hN0Lc1r7udYO3G8ZBu_s8vY9gcLtR1MQ9RJs8LeCzHtxW8avDVLp2_gdYcn2VFs8lvY8vU7ePVLlMH38NBxBVkTGMI9FikcdNeSYDdLz0zt2I97t2xwOLEFKmtPg4E1dSxAy-vNT0YDYs6wwQ0RaG7xKp6KYLSYyxa0JO9mmzlvq1vNaDmQk5V0DH8fvXLUqh9genpyfTzmXQ4GXqHtXnMEjKUUuZUiEDIRzqpEJBW6VYh3k0xZl6gyt3mwZZbJwhfWFbmpUlWFsqqkSz7CTt3Ufg9YKKV3CPiMQqfUComaVeQqZKREQuXkAHjf73oRQ23onoN2p6OcNMlJj4TGQgNQvXD0syGj0Rr8o-QeylKbW9SjenolKcoeJRZAMDiAw2cCfmoJQkOK7VcO4GsvcY0zkbZXsPuazYqcqDQtC8RDf_8Gq0Fctf_frf8CL8bXlxf64mxy_gle0ptIJTqAnfVy4z8jSlrbw24WPAJccw9l |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Studies+of+the+effect+of+pressure+and+hydrogen+permeance+on+the+ethanol+steam+reforming+reaction+with+palladium-+and+silica-based+membranes&rft.jtitle=Journal+of+membrane+science&rft.au=Lim%2C+Hankwon&rft.au=Gu%2C+Yunfeng&rft.au=Oyama%2C+S.+Ted&rft.date=2012-04-01&rft.pub=Elsevier+B.V&rft.issn=0376-7388&rft.eissn=1873-3123&rft.volume=396&rft.spage=119&rft.epage=127&rft_id=info:doi/10.1016%2Fj.memsci.2012.01.004&rft.externalDocID=S0376738812000117 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0376-7388&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0376-7388&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0376-7388&client=summon |