Studies of the effect of pressure and hydrogen permeance on the ethanol steam reforming reaction with palladium- and silica-based membranes

The performance of membrane reactors fitted with silica-based and palladium-based membranes with hydrogen permeances of 10−8–10−6molm−2s−1Pa−1 was studied and it was found that permeance had a favorable effect in the performance of the reactors. The system studied was the ethanol steam reforming. Th...

Full description

Saved in:
Bibliographic Details
Published inJournal of membrane science Vol. 396; pp. 119 - 127
Main Authors Lim, Hankwon, Gu, Yunfeng, Oyama, S. Ted
Format Journal Article
LanguageEnglish
Published Amsterdam Elsevier B.V 01.04.2012
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The performance of membrane reactors fitted with silica-based and palladium-based membranes with hydrogen permeances of 10−8–10−6molm−2s−1Pa−1 was studied and it was found that permeance had a favorable effect in the performance of the reactors. The system studied was the ethanol steam reforming. The highest ethanol conversion enhancement of 44% compared to a packed-bed reactor was obtained in a membrane reactor fitted with the highest hydrogen permeance of 3.9×10−6molm−2s−1Pa−1. The necessary permeance for commercial operation is calculated to be 2.5×10−7molm−2s−1Pa−1. [Display omitted] ► A membrane reactor produced enhanced ethanol conversion over a packed-bed reactor. ► Both H2 permeance and selectivity had a favorable effect in membrane reactors. ► A Weisz's “window of reality” analysis gave the needed permeance for commercialization. ► The necessary H2 permeance was 2.5×10−7molm−2s−1Pa−1 with 1cm OD tubes. The effects of hydrogen permeance and selectivity in the performance of membrane reactors for the ethanol steam reforming (EtOHSR) were studied at 1–10atm and 623K. The studies were performed with Pd–Cu and SiO2–Al2O3 composite membranes prepared by depositing the permselective components onto porous alumina supports with intermediate layers. The hydrogen permeances of the membranes varied from 5.2×10−8 to 3.9×10−6molm−2s−1Pa−1 and the selectivity ranged from 200 to 1000 (H2/CO2) at 623K, which allowed a broad set of conditions to be probed. Comparison studies with packed-bed reactor (PBR) and membrane reactor (MR) operation showed that higher ethanol conversions and hydrogen molar flows were obtained in the MRs for all pressures studied. It was determined that both hydrogen permeance and selectivity had a favorable effect on the EtOHSR reaction, with the highest ethanol conversion enhancement of 44% and hydrogen molar flow enhancement of 69% obtained in a MR fitted with a membrane with the highest hydrogen permeance. A criterion for the required permeance for industrial applications is developed, which for 1cm diameter membrane tubes is 2.5×10−7molm−2s−1Pa−1.
AbstractList The performance of membrane reactors fitted with silica-based and palladium-based membranes with hydrogen permeances of 10−8–10−6molm−2s−1Pa−1 was studied and it was found that permeance had a favorable effect in the performance of the reactors. The system studied was the ethanol steam reforming. The highest ethanol conversion enhancement of 44% compared to a packed-bed reactor was obtained in a membrane reactor fitted with the highest hydrogen permeance of 3.9×10−6molm−2s−1Pa−1. The necessary permeance for commercial operation is calculated to be 2.5×10−7molm−2s−1Pa−1. [Display omitted] ► A membrane reactor produced enhanced ethanol conversion over a packed-bed reactor. ► Both H2 permeance and selectivity had a favorable effect in membrane reactors. ► A Weisz's “window of reality” analysis gave the needed permeance for commercialization. ► The necessary H2 permeance was 2.5×10−7molm−2s−1Pa−1 with 1cm OD tubes. The effects of hydrogen permeance and selectivity in the performance of membrane reactors for the ethanol steam reforming (EtOHSR) were studied at 1–10atm and 623K. The studies were performed with Pd–Cu and SiO2–Al2O3 composite membranes prepared by depositing the permselective components onto porous alumina supports with intermediate layers. The hydrogen permeances of the membranes varied from 5.2×10−8 to 3.9×10−6molm−2s−1Pa−1 and the selectivity ranged from 200 to 1000 (H2/CO2) at 623K, which allowed a broad set of conditions to be probed. Comparison studies with packed-bed reactor (PBR) and membrane reactor (MR) operation showed that higher ethanol conversions and hydrogen molar flows were obtained in the MRs for all pressures studied. It was determined that both hydrogen permeance and selectivity had a favorable effect on the EtOHSR reaction, with the highest ethanol conversion enhancement of 44% and hydrogen molar flow enhancement of 69% obtained in a MR fitted with a membrane with the highest hydrogen permeance. A criterion for the required permeance for industrial applications is developed, which for 1cm diameter membrane tubes is 2.5×10−7molm−2s−1Pa−1.
The effects of hydrogen permeance and selectivity in the performance of membrane reactors for the ethanol steam reforming (EtOHSR) were studied at 1–10atm and 623K. The studies were performed with Pd–Cu and SiO₂–Al₂O₃ composite membranes prepared by depositing the permselective components onto porous alumina supports with intermediate layers. The hydrogen permeances of the membranes varied from 5.2×10⁻⁸ to 3.9×10⁻⁶molm⁻²s⁻¹Pa⁻¹ and the selectivity ranged from 200 to 1000 (H₂/CO₂) at 623K, which allowed a broad set of conditions to be probed. Comparison studies with packed-bed reactor (PBR) and membrane reactor (MR) operation showed that higher ethanol conversions and hydrogen molar flows were obtained in the MRs for all pressures studied. It was determined that both hydrogen permeance and selectivity had a favorable effect on the EtOHSR reaction, with the highest ethanol conversion enhancement of 44% and hydrogen molar flow enhancement of 69% obtained in a MR fitted with a membrane with the highest hydrogen permeance. A criterion for the required permeance for industrial applications is developed, which for 1cm diameter membrane tubes is 2.5×10⁻⁷molm⁻²s⁻¹Pa⁻¹.
The effects of hydrogen permeance and selectivity in the performance of membrane reactors for the ethanol steam reforming (EtOHSR) were studied at 1-10 atm and 623 K. The studies were performed with Pd-Cu and SiO2-Al2O3 composite membranes prepared by depositing the permselective components onto porous alumina supports with intermediate layers. The hydrogen permeances of the membranes varied from 5.2 10-8 to 3.9 10-6 mol m-2 s-1 Pa-1 and the selectivity ranged from 200 to 1000 (H2/CO2) at 623 K, which allowed a broad set of conditions to be probed. Comparison studies with packed-bed reactor (PBR) and membrane reactor (MR) operation showed that higher ethanol conversions and hydrogen molar flows were obtained in the MRs for all pressures studied. It was determined that both hydrogen permeance and selectivity had a favorable effect on the EtOHSR reaction, with the highest ethanol conversion enhancement of 44% and hydrogen molar flow enhancement of 69% obtained in a MR fitted with a membrane with the highest hydrogen permeance. A criterion for the required permeance for industrial applications is developed, which for 1 cm diameter membrane tubes is 2.5 10-7 mol m-2 s-1 Pa-1.
The effects of hydrogen permeance and selectivity on the performance of membrane reactors for ethanol steam reforming (EtOHSR) were studied at 1-10 atm and 623 K. Pd-Cu and SiO2-Al2O3 composite membranes prepared by depositing the permselective components onto porous alumina supports with intermediate layers were used. The hydrogen permeances of the membranes varied from 5.2 x 10 exp(-8) to 3.9 x 10 exp(-6) mol/m2.s.Pa and the selectivity ranged from 200 to 1000 (H2/CO2) at 623 K, which allowed a broad set of conditions to be tested. Comparison studies with packed-bed reactor (PBR) and membrane reactor (MR) operation showed that higher ethanol conversions and hydrogen molar flows were obtained in the MRs for all pressures studied. It was determined that both hydrogen permeance and selectivity had a favourable effect on the EtOHSR reaction, with the highest ethanol conversion enhancement of 44% and hydrogen molar flow enhancement of 69% obtained in a MR fitted with a membrane with the highest hydrogen permeance. A criterion for the required permeance for industrial applications was developed, being 2.5 x 10 exp(-7) mol/m2.s.Pa for 1 cm diameter membrane tubes.
Author Gu, Yunfeng
Lim, Hankwon
Oyama, S. Ted
Author_xml – sequence: 1
  givenname: Hankwon
  surname: Lim
  fullname: Lim, Hankwon
  organization: Environmental Catalysis and Nanomaterials Laboratory, Department of Chemical Engineering, Virginia Polytechnic Institute & State University, Blacksburg, VA 24061-0211, United States
– sequence: 2
  givenname: Yunfeng
  surname: Gu
  fullname: Gu, Yunfeng
  organization: Environmental Catalysis and Nanomaterials Laboratory, Department of Chemical Engineering, Virginia Polytechnic Institute & State University, Blacksburg, VA 24061-0211, United States
– sequence: 3
  givenname: S. Ted
  surname: Oyama
  fullname: Oyama, S. Ted
  email: oyama@vt.edu
  organization: Environmental Catalysis and Nanomaterials Laboratory, Department of Chemical Engineering, Virginia Polytechnic Institute & State University, Blacksburg, VA 24061-0211, United States
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=25650649$$DView record in Pascal Francis
BookMark eNqNkc2KFDEUhYOMYM_oGwhmI7ipMv-V2ggyqDMw4GKcdUglN91pqiptUqXMM_jSpq3BpbjKDXzn3sM5l-hiTjMg9JqSlhKq3h_bCabiYssIZS2hLSHiGdpR3fGGU8Yv0I7wTjUd1_oFuizlSAjtiO536Nf9svoIBaeAlwNgCAHccv6dMpSyZsB29vjw6HPaw4xPkCewswOc5k2wHOycRlwWsBPOEFKe4ryvk3VLrNDPuBzwyY6j9XGdmj_rShyjs81gC3hcvQ_ZzlBeoufBjgVePb1X6OHzp2_XN83d1y-31x_vGieYWhpKZc-oGhgNXEpB_dBxyp3opaYDl93gederQYWhl5Jp0IPXyjrRudA7xzy_Qu-2vaecvq9QFjPF4qA6nCGtxVChhCSKUf1fqOi1ZLSiYkNdTqXUIMwpx8nmR0OJOddkjmaryZxrMoSaWlOVvX26YIuzY6hJuFj-aplU1YroK_dm44JNxu5zZR7u6yJFCNGCSFWJDxsBNbsfEbKpt6BW5WOunRqf4r-t_AYn-7ZY
CODEN JMESDO
CitedBy_id crossref_primary_10_1016_j_energy_2019_06_073
crossref_primary_10_1016_j_ijhydene_2021_11_041
crossref_primary_10_7464_ksct_2014_20_4_425
crossref_primary_10_1002_er_3735
crossref_primary_10_1016_j_seppur_2017_05_027
crossref_primary_10_1093_ce_zkad014
crossref_primary_10_1016_j_ijhydene_2013_03_127
crossref_primary_10_1016_j_memsci_2020_118083
crossref_primary_10_1016_j_cherd_2015_03_002
crossref_primary_10_1016_j_ijhydene_2017_07_202
crossref_primary_10_1016_j_memsci_2016_12_023
crossref_primary_10_1016_j_memsci_2022_120326
crossref_primary_10_1016_j_seppur_2017_11_037
crossref_primary_10_1007_s11814_014_0359_x
crossref_primary_10_1016_j_ijhydene_2016_12_153
crossref_primary_10_1002_ese3_183
crossref_primary_10_1021_acs_energyfuels_3c04026
crossref_primary_10_1016_j_ijhydene_2015_01_106
crossref_primary_10_1016_j_cattod_2013_02_024
crossref_primary_10_1016_j_seppur_2018_08_041
crossref_primary_10_1016_j_ijhydene_2018_09_184
crossref_primary_10_1016_j_ijhydene_2017_09_084
crossref_primary_10_1016_j_memsci_2014_08_029
crossref_primary_10_1016_j_ijhydene_2015_05_146
crossref_primary_10_1016_j_ijhydene_2012_11_010
crossref_primary_10_1016_j_ijhydene_2014_05_127
crossref_primary_10_1016_j_cattod_2015_11_006
crossref_primary_10_1016_j_ijhydene_2020_05_046
crossref_primary_10_1021_cr5003744
crossref_primary_10_1063_1674_0068_28_cjcp1412221
crossref_primary_10_1016_j_jngse_2016_08_019
crossref_primary_10_1016_j_ijhydene_2019_07_199
crossref_primary_10_1016_j_jiec_2021_08_029
crossref_primary_10_1016_j_ijhydene_2019_11_237
crossref_primary_10_1007_s10853_019_03660_z
crossref_primary_10_1016_j_ijhydene_2018_08_087
crossref_primary_10_1016_j_memsci_2017_12_038
crossref_primary_10_3390_membranes10030050
crossref_primary_10_1111_jace_16594
crossref_primary_10_1039_C8EE01393D
crossref_primary_10_3390_pr4020018
crossref_primary_10_7464_ksct_2013_19_4_379
crossref_primary_10_1080_00150193_2018_1458537
crossref_primary_10_1002_adma_202106785
crossref_primary_10_1016_j_seppur_2019_116340
crossref_primary_10_3390_molecules22010051
crossref_primary_10_1016_j_ijhydene_2018_06_110
crossref_primary_10_1252_jcej_22we044
Cites_doi 10.1016/j.cattod.2005.03.066
10.1016/S1385-8947(02)00106-7
10.1016/j.apcata.2005.03.018
10.1002/adma.200602637
10.1016/j.memsci.2007.08.045
10.1016/j.memsci.2009.09.009
10.1016/j.memsci.2007.10.001
10.1016/S0376-7388(00)00448-8
10.1016/j.ijhydene.2010.11.020
10.1016/j.ijhydene.2010.10.101
10.1016/j.memsci.2011.03.057
10.1016/j.ijhydene.2010.03.136
10.1016/j.ijhydene.2009.11.076
10.1016/j.memsci.2004.06.046
10.1016/j.jcat.2003.12.008
10.1016/j.memsci.2007.10.025
10.1016/j.memsci.2007.09.063
10.1016/j.ijhydene.2010.01.035
10.1016/S0166-9834(00)84445-0
10.2202/1542-6580.1450
10.1016/S0376-7388(00)83041-0
10.1016/j.apcata.2005.03.013
10.1016/j.memsci.2010.01.042
10.1016/S0376-7388(00)83040-9
10.1016/j.ijhydene.2009.12.042
10.1002/aic.10215
10.1016/j.cej.2009.04.017
10.1016/S1003-9953(06)60011-X
10.1016/S0378-7753(00)00498-5
10.1023/B:TOCA.0000024927.26174.9b
10.1016/j.memsci.2009.03.040
10.1016/j.apcatb.2008.08.006
10.1016/j.memsci.2005.05.020
10.1016/j.memsci.2011.04.054
10.1016/j.ijhydene.2010.02.050
10.1016/j.ijhydene.2009.11.034
10.1627/jpi.46.93
ContentType Journal Article
Copyright 2012 Elsevier B.V.
2015 INIST-CNRS
Copyright_xml – notice: 2012 Elsevier B.V.
– notice: 2015 INIST-CNRS
DBID FBQ
IQODW
AAYXX
CITATION
7QH
7UA
C1K
F1W
H97
L.G
DOI 10.1016/j.memsci.2012.01.004
DatabaseName AGRIS
Pascal-Francis
CrossRef
Aqualine
Water Resources Abstracts
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
Aquatic Science & Fisheries Abstracts (ASFA) Professional
DatabaseTitle CrossRef
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Aqualine
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
ASFA: Aquatic Sciences and Fisheries Abstracts
Water Resources Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList

Aquatic Science & Fisheries Abstracts (ASFA) Professional
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Database_xml – sequence: 1
  dbid: FBQ
  name: AGRIS
  url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
EISSN 1873-3123
EndPage 127
ExternalDocumentID 10_1016_j_memsci_2012_01_004
25650649
US201600084056
S0376738812000117
GroupedDBID ---
--K
--M
-~X
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABFNM
ABJNI
ABMAC
ABNUV
ABXDB
ABXRA
ABYKQ
ACDAQ
ACGFS
ACNNM
ACRLP
ADBBV
ADEWK
ADEZE
ADMUD
AEBSH
AEKER
AENEX
AEZYN
AFKWA
AFRZQ
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHPOS
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HZ~
IHE
J1W
KOM
LX7
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
RNS
ROL
RPZ
SCC
SDF
SDG
SDP
SES
SPC
SPCBC
SSG
SSM
SSZ
T5K
XPP
Y6R
ZMT
~G-
29L
AAQXK
ABPIF
ABPTK
AI.
ASPBG
AVWKF
AZFZN
BBWZM
EJD
FBQ
FEDTE
FGOYB
HLY
HVGLF
NDZJH
R2-
SCE
SEW
VH1
WUQ
8W4
AALMO
ADALY
IPNFZ
IQODW
AAHBH
AAXKI
AAYXX
AFJKZ
AKRWK
CITATION
7QH
7UA
C1K
F1W
H97
L.G
ID FETCH-LOGICAL-c426t-1159216b21f35541db7313c49581b357bd3796b6fb95528e8bd86ac47cf9cc2d3
IEDL.DBID AIKHN
ISSN 0376-7388
IngestDate Fri Oct 25 03:02:39 EDT 2024
Fri Oct 25 01:28:53 EDT 2024
Thu Sep 26 15:53:15 EDT 2024
Thu Nov 24 18:35:10 EST 2022
Wed Dec 27 19:09:25 EST 2023
Fri Feb 23 02:27:59 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Membrane reactor
Silica–alumina membranes
Ethanol steam reforming
PdCu membranes
Permeance
Selectivity
Commercialization
Binary compound
Support
Hydrogen
Industrial application
Alcohol
Porous material
Silica
Composite material
Alkanol
Membrane
Platinoid
Silica-alumina membranes
Diameter
Aluminium oxide
Packed bed
Ethanol
Transition metal
Palladium
Conversion
Silicon oxides
Steam reforming
Alumina
Language English
License CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c426t-1159216b21f35541db7313c49581b357bd3796b6fb95528e8bd86ac47cf9cc2d3
Notes http://dx.doi.org/10.1016/j.memsci.2012.01.004
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 1464498521
PQPubID 23462
PageCount 9
ParticipantIDs proquest_miscellaneous_1464506218
proquest_miscellaneous_1464498521
crossref_primary_10_1016_j_memsci_2012_01_004
pascalfrancis_primary_25650649
fao_agris_US201600084056
elsevier_sciencedirect_doi_10_1016_j_memsci_2012_01_004
PublicationCentury 2000
PublicationDate 2012-04-01
PublicationDateYYYYMMDD 2012-04-01
PublicationDate_xml – month: 04
  year: 2012
  text: 2012-04-01
  day: 01
PublicationDecade 2010
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationTitle Journal of membrane science
PublicationYear 2012
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References Yoshino, Suzuki, Nair, Taguchi, Itoh (bib0225) 2005; 267
(bib0005) 2011
Irusta, Munera, Carrara, Lombardo, Cornaglia (bib0075) 2005; 287
Hacarlioglu, Gu, Oyama (bib0080) 2006; 15
Smith, Shantha (bib0050) 2007; 5
Basile, Pinacci, Iulianelli, Broglia, Drago, Liguori, Longo, Calabrò (bib0055) 2011; 36
Roa, Way, McCormick, Paglieri (bib0155) 2003; 93
Tong, Matsumura (bib0090) 2005; 286
Boudart (bib0185) 1997
Basile, Gallucci, Paturzo (bib0100) 2005; 104
Iulianelli, Basile (bib0135) 2010; 35
Oyama (bib0010) 2011
Yun, Oyama (bib0015) 2011; 375
Tosti, Basile, Borgognoni, Capaldo, Cordiner, Di Cave, Gallucci, Rizzello, Santucci, Traversa (bib0120) 2008; 308
Yu, Lee, Park, Lee, Lee (bib0130) 2009; 86
Y.H. Ma, P.P. Mardilovich, Y. She, Hydrogen gas-extraction module and method of fabrication, US Patent 6,152,987 (2000), Assignee: Worcester Polytechnic Institute, Worcester, MA.
Tosti, Basile, Borgognoni, Capaldo, Cordiner, Di Cave, Gallucci, Rizzello, Santucci, Traversa (bib0125) 2008; 308
Uemiya, Sato, Ando, Matsuda, Kikuchi (bib0095) 1991; 67
Lim, Oyama (bib0165) 2011; 378
Gallucci, Van Sintannaland, Kuipers (bib0045) 2010; 35
Gu, Hacarlioglu, Oyama (bib0175) 2008; 310
S.T. Oyama, Y. Gu, D. Lee, Hydrogen-selective silica-based membrane, US Patent 7,179,325 (2007), Assignee: Virginia Tech Intellectual Properties, Inc., Blacksburg, VA.
Uemiya, Matsuda, Kikuchi (bib0210) 1991; 56
Lim, Gu, Oyama (bib0115) 2010; 351
Uemiya, Sato, Ando, Kude, Matsuda, Kikuchi (bib0215) 1991; 56
Khativ, de Souza, Noronha, Oyama (bib0150) 2011
Oyama, Hacarlioglu (bib0025) 2009; 337
Gu, Oyama (bib0180) 2009; 345
Prabhu, Oyama (bib0065) 2000; 176
Weisz (bib0220) 1982
Llorca, Homs, Sales, Fierro, de la Piscina (bib0190) 2004; 222
Oyama, Lim (bib0020) 2009; 151
Lee, Hacarlioglu, Oyama (bib0070) 2004; 29
Gu, Oyama (bib0170) 2007; 306
Iulianelli, Liguori, Longo, Tosti, Pinacci, Basile (bib0140) 2010; 35
Gu, Oyama (bib0200) 2007; 19
Kikuchi, Kawabe, Matsukata (bib0105) 2003; 46
Lee, Mogi, Lee, Kim (bib0030) 2011; 36
Tsuru, Yamaguchi, Yoshioka, Asaeda (bib0085) 2004; 50
Oyama, Lee, Hacarlioglu, Saraf (bib0205) 2004; 244
Papadias, Lee, Ferrandon, Ahmed (bib0145) 2010; 35
Birdsell, Willms, Dye (bib0110) 1997
Ioannides (bib0060) 2001; 92
Rakib, Grace, Lim, Elnashaie, Ghiasi (bib0035) 2010; 35
Basile, Campanari, Manzolini, Iulianelli, Longo, Liguori, De Falco, Piemonte (bib0040) 2011; 36
Iarikov, Hacarlioglu, Oyama (bib0230) 2011
Oyama (10.1016/j.memsci.2012.01.004_bib0025) 2009; 337
Uemiya (10.1016/j.memsci.2012.01.004_bib0215) 1991; 56
Tosti (10.1016/j.memsci.2012.01.004_bib0120) 2008; 308
Yu (10.1016/j.memsci.2012.01.004_bib0130) 2009; 86
Uemiya (10.1016/j.memsci.2012.01.004_bib0210) 1991; 56
Hacarlioglu (10.1016/j.memsci.2012.01.004_bib0080) 2006; 15
Iulianelli (10.1016/j.memsci.2012.01.004_bib0135) 2010; 35
Irusta (10.1016/j.memsci.2012.01.004_bib0075) 2005; 287
10.1016/j.memsci.2012.01.004_bib0195
Gu (10.1016/j.memsci.2012.01.004_bib0175) 2008; 310
Gu (10.1016/j.memsci.2012.01.004_bib0200) 2007; 19
Oyama (10.1016/j.memsci.2012.01.004_bib0205) 2004; 244
(10.1016/j.memsci.2012.01.004_bib0005) 2011
Lim (10.1016/j.memsci.2012.01.004_bib0165) 2011; 378
Tong (10.1016/j.memsci.2012.01.004_bib0090) 2005; 286
Uemiya (10.1016/j.memsci.2012.01.004_bib0095) 1991; 67
Ioannides (10.1016/j.memsci.2012.01.004_bib0060) 2001; 92
Basile (10.1016/j.memsci.2012.01.004_bib0100) 2005; 104
Weisz (10.1016/j.memsci.2012.01.004_bib0220) 1982
Lee (10.1016/j.memsci.2012.01.004_bib0030) 2011; 36
Lee (10.1016/j.memsci.2012.01.004_bib0070) 2004; 29
Papadias (10.1016/j.memsci.2012.01.004_bib0145) 2010; 35
Iulianelli (10.1016/j.memsci.2012.01.004_bib0140) 2010; 35
Birdsell (10.1016/j.memsci.2012.01.004_bib0110) 1997
Roa (10.1016/j.memsci.2012.01.004_bib0155) 2003; 93
Tsuru (10.1016/j.memsci.2012.01.004_bib0085) 2004; 50
Gu (10.1016/j.memsci.2012.01.004_bib0180) 2009; 345
Yoshino (10.1016/j.memsci.2012.01.004_bib0225) 2005; 267
Iarikov (10.1016/j.memsci.2012.01.004_bib0230) 2011
Gallucci (10.1016/j.memsci.2012.01.004_bib0045) 2010; 35
Smith (10.1016/j.memsci.2012.01.004_bib0050) 2007; 5
10.1016/j.memsci.2012.01.004_bib0160
Tosti (10.1016/j.memsci.2012.01.004_bib0125) 2008; 308
Oyama (10.1016/j.memsci.2012.01.004_bib0020) 2009; 151
Kikuchi (10.1016/j.memsci.2012.01.004_bib0105) 2003; 46
Gu (10.1016/j.memsci.2012.01.004_bib0170) 2007; 306
Khativ (10.1016/j.memsci.2012.01.004_bib0150) 2011
Oyama (10.1016/j.memsci.2012.01.004_bib0010) 2011
Prabhu (10.1016/j.memsci.2012.01.004_bib0065) 2000; 176
Basile (10.1016/j.memsci.2012.01.004_bib0040) 2011; 36
Lim (10.1016/j.memsci.2012.01.004_bib0115) 2010; 351
Boudart (10.1016/j.memsci.2012.01.004_bib0185) 1997
Rakib (10.1016/j.memsci.2012.01.004_bib0035) 2010; 35
Basile (10.1016/j.memsci.2012.01.004_bib0055) 2011; 36
Yun (10.1016/j.memsci.2012.01.004_bib0015) 2011; 375
Llorca (10.1016/j.memsci.2012.01.004_bib0190) 2004; 222
References_xml – volume: 50
  start-page: 2794
  year: 2004
  end-page: 2805
  ident: bib0085
  article-title: Methane steam reforming by microporous catalytic membrane reactors
  publication-title: AICHE J.
  contributor:
    fullname: Asaeda
– start-page: 424
  year: 1982
  end-page: 425
  ident: bib0220
  article-title: The science of the possible
  publication-title: Chem. Tech.
  contributor:
    fullname: Weisz
– volume: 56
  start-page: 303
  year: 1991
  end-page: 313
  ident: bib0215
  article-title: Separation of hydrogen through palladium thin film supported on a porous glass tube
  publication-title: J. Membr. Sci.
  contributor:
    fullname: Kikuchi
– volume: 375
  start-page: 28
  year: 2011
  end-page: 45
  ident: bib0015
  article-title: Correlations in palladium membranes for hydrogen separation: a review
  publication-title: J. Membr. Sci.
  contributor:
    fullname: Oyama
– volume: 35
  start-page: 7142
  year: 2010
  end-page: 7150
  ident: bib0045
  article-title: Theoretical comparison of packed bed and fluidized bed membrane reactors for methane reforming
  publication-title: Int. J. Hydrogen Energy
  contributor:
    fullname: Kuipers
– volume: 286
  start-page: 226
  year: 2005
  end-page: 231
  ident: bib0090
  article-title: Effect of catalytic activity on methane steam reforming in hydrogen-permeable membrane reactor
  publication-title: Appl. Catal. A: Gen.
  contributor:
    fullname: Matsumura
– volume: 29
  start-page: 45
  year: 2004
  end-page: 57
  ident: bib0070
  article-title: The effect of pressure in membrane reactors: trade-off in permeability and equilibrium conversion in the catalytic reforming of CH
  publication-title: Top. Catal.
  contributor:
    fullname: Oyama
– volume: 308
  start-page: 258
  year: 2008
  end-page: 263
  ident: bib0125
  article-title: Low-temperature ethanol steam reforming in a Pd–Ag membrane reactor. Part 2. Pt-based and Ni-based catalysts and general comparison
  publication-title: J. Membr. Sci.
  contributor:
    fullname: Traversa
– volume: 93
  start-page: 11
  year: 2003
  end-page: 22
  ident: bib0155
  article-title: Preparation and characterization of Pd–Cu composite membranes for hydrogen separation
  publication-title: Chem. Eng. J.
  contributor:
    fullname: Paglieri
– volume: 36
  start-page: 2029
  year: 2011
  end-page: 2037
  ident: bib0055
  article-title: Ethanol steam reforming reaction in a porous stainless steel supported palladium membrane reactor
  publication-title: Int. J. Hydrogen Energy
  contributor:
    fullname: Calabrò
– volume: 36
  start-page: 1897
  year: 2011
  end-page: 1902
  ident: bib0030
  article-title: Prioritizing the weights of hydrogen energy technologies in the sector of the hydrogen economy by using a fuzzy AHP approach
  publication-title: Int. J. Hydrogen Energy
  contributor:
    fullname: Kim
– volume: 176
  start-page: 233
  year: 2000
  end-page: 248
  ident: bib0065
  article-title: Highly hydrogen selective ceramic membranes: application to the transformation of greenhouse gases
  publication-title: J. Membr. Sci.
  contributor:
    fullname: Oyama
– volume: 378
  start-page: 179
  year: 2011
  end-page: 185
  ident: bib0165
  article-title: Hydrogen selective thin palladium–copper composite membranes on alumina supports
  publication-title: J. Membr. Sci.
  contributor:
    fullname: Oyama
– volume: 306
  start-page: 216
  year: 2007
  end-page: 227
  ident: bib0170
  article-title: Ultra-thin, hydrogen-selective silica membranes deposited on alumina graded structures prepared from size-controlled boehmite sols
  publication-title: J. Membr. Sci.
  contributor:
    fullname: Oyama
– volume: 92
  start-page: 17
  year: 2001
  end-page: 25
  ident: bib0060
  article-title: Thermodynamic analysis of ethanol processors for fuel cell applications
  publication-title: J. Power Sources
  contributor:
    fullname: Ioannides
– volume: 56
  start-page: 315
  year: 1991
  end-page: 325
  ident: bib0210
  article-title: Hydrogen permeable palladium–silver alloy membrane supported on porous ceramics
  publication-title: J. Membr. Sci.
  contributor:
    fullname: Kikuchi
– volume: 36
  start-page: 1531
  year: 2011
  end-page: 1539
  ident: bib0040
  article-title: Methane steam reforming in a Pd–Ag membrane reformer: an experimental study on reaction pressure influence at middle temperature
  publication-title: Int. J. Hydrogen Energy
  contributor:
    fullname: Piemonte
– volume: 35
  start-page: 2004
  year: 2010
  end-page: 2017
  ident: bib0145
  article-title: An analytical and experimental investigation of high-pressure catalytic steam reforming of ethanol in a hydrogen selective membrane reactor
  publication-title: Int. J. Hydrogen Energy
  contributor:
    fullname: Ahmed
– volume: 15
  start-page: 73
  year: 2006
  end-page: 81
  ident: bib0080
  article-title: Studies of the methane steam reforming reaction at high pressure in a ceramic membrane reactor
  publication-title: J. Nat. Gas Chem.
  contributor:
    fullname: Oyama
– volume: 86
  start-page: 121
  year: 2009
  end-page: 126
  ident: bib0130
  article-title: Ethanol steam reforming in a membrane reactor with Pt-impregnated Knudsen membranes
  publication-title: Appl. Catal. B: Environ.
  contributor:
    fullname: Lee
– volume: 345
  start-page: 267
  year: 2009
  end-page: 275
  ident: bib0180
  article-title: Permeation properties and hydrothermal stability of silica–titania membranes supported on porous alumina substrates
  publication-title: J. Membr. Sci.
  contributor:
    fullname: Oyama
– start-page: 25
  year: 2011
  end-page: 60
  ident: bib0150
  article-title: Review of silica membranes for hydrogen separation prepared by chemical vapor deposition (CVD)
  publication-title: Inorganic, Polymeric, and Composite Membranes: Structure-Function and other Correlations
  contributor:
    fullname: Oyama
– volume: 308
  start-page: 250
  year: 2008
  end-page: 257
  ident: bib0120
  article-title: Low temperature ethanol steam reforming in a Pd–Ag membrane reactor: Part 1: Ru-based catalyst
  publication-title: J. Membr. Sci.
  contributor:
    fullname: Traversa
– year: 2011
  ident: bib0005
  publication-title: Inorganic, Polymeric, and Composite Membranes: Structure-Function and other Correlations
– volume: 46
  start-page: 93
  year: 2003
  end-page: 98
  ident: bib0105
  article-title: Steam reforming of methanol on Ni/Al
  publication-title: J. Jpn. Petrol. Inst.
  contributor:
    fullname: Matsukata
– volume: 67
  start-page: 223
  year: 1991
  end-page: 230
  ident: bib0095
  article-title: Steam reforming of methane in a hydrogen-permeable membrane reactor
  publication-title: Appl. Catal.
  contributor:
    fullname: Kikuchi
– volume: 244
  start-page: 45
  year: 2004
  end-page: 53
  ident: bib0205
  article-title: High permeability in a nonporous system: theory of hydrogen permeability in dense silica membranes
  publication-title: J. Membr. Sci.
  contributor:
    fullname: Saraf
– volume: 35
  start-page: 3170
  year: 2010
  end-page: 3177
  ident: bib0135
  article-title: An experimental study on bio-ethanol steam reforming in a catalytic membrane reactor. Part I: Temperature and sweep-gas flow configuration effects
  publication-title: Int. J. Hydrogen Energy
  contributor:
    fullname: Basile
– volume: 267
  start-page: 8
  year: 2005
  end-page: 17
  ident: bib0225
  article-title: Development of tubular substrates, silica based membranes and membrane modules for hydrogen separation at high temperature
  publication-title: J. Membr. Sci.
  contributor:
    fullname: Itoh
– volume: 337
  start-page: 188
  year: 2009
  end-page: 199
  ident: bib0025
  article-title: The boundary between simple and complex descriptions of membrane reactors: the transition between 1-D and 2-D analysis
  publication-title: J. Membr. Sci.
  contributor:
    fullname: Hacarlioglu
– volume: 19
  start-page: 1636
  year: 2007
  end-page: 1640
  ident: bib0200
  article-title: High molecular permeance in a pore-less ceramic membrane
  publication-title: Adv. Mater.
  contributor:
    fullname: Oyama
– volume: 151
  start-page: 351
  year: 2009
  end-page: 358
  ident: bib0020
  article-title: An operability level coefficient (OLC) as a useful tool for correlating the performance of membrane reactors
  publication-title: Chem. Eng. Sci.
  contributor:
    fullname: Lim
– volume: 310
  start-page: 28
  year: 2008
  end-page: 37
  ident: bib0175
  article-title: Hydrothermally-stable silica–alumina composite membranes for hydrogen separation
  publication-title: J. Membr. Sci.
  contributor:
    fullname: Oyama
– volume: 35
  start-page: 3159
  year: 2010
  end-page: 3164
  ident: bib0140
  article-title: An experimental study on bio-ethanol steam reforming in a catalytic membrane reactor. Part II: Reaction pressure, sweep factor and WHSV effects
  publication-title: Int. J. Hydrogen Energy
  contributor:
    fullname: Basile
– volume: 351
  start-page: 149
  year: 2010
  end-page: 159
  ident: bib0115
  article-title: Reaction of primary and secondary products in a membrane reactor: studies of ethanol steam reforming with a silica–alumina composite membrane
  publication-title: J. Membr. Sci.
  contributor:
    fullname: Oyama
– volume: 104
  start-page: 244
  year: 2005
  end-page: 250
  ident: bib0100
  article-title: A dense Pd/Ag membrane reactor for methanol steam reforming: experimental study
  publication-title: Catal. Today
  contributor:
    fullname: Paturzo
– start-page: 1
  year: 2011
  end-page: 24
  ident: bib0010
  article-title: Correlations
  publication-title: Inorganic, Polymeric, and Composite Membranes: Structure-Function and other Correlations
  contributor:
    fullname: Oyama
– volume: 5
  start-page: A84
  year: 2007
  ident: bib0050
  article-title: Membrane reactor based hydrogen separation from biomass gas: a review of technical advancements and prospects
  publication-title: Int. J. Chem. Reactor Eng.
  contributor:
    fullname: Shantha
– start-page: 94
  year: 1997
  ident: bib0185
  article-title: Surface time yield of membrane reactors
  publication-title: Cattech
  contributor:
    fullname: Boudart
– volume: 222
  start-page: 470
  year: 2004
  end-page: 480
  ident: bib0190
  article-title: Effect of sodium addition on the performance of Co–ZnO-based catalysts for hydrogen production from bioethanol
  publication-title: J. Catal.
  contributor:
    fullname: de la Piscina
– volume: 35
  start-page: 6276
  year: 2010
  end-page: 6290
  ident: bib0035
  article-title: Steam reforming of propane in a fluidized bed membrane reactor for hydrogen production
  publication-title: Int. J. Hydrogen Energy
  contributor:
    fullname: Ghiasi
– start-page: 61
  year: 2011
  end-page: 78
  ident: bib0230
  article-title: Amorphous silica membranes for H
  publication-title: Inorganic, Polymeric, and Composite Membranes: Structure-Function and other Correlations
  contributor:
    fullname: Oyama
– volume: 287
  start-page: 147
  year: 2005
  end-page: 158
  ident: bib0075
  article-title: A stable, novel catalyst improves hydrogen production in a membrane reactor
  publication-title: Appl. Catal. A: Gen.
  contributor:
    fullname: Cornaglia
– start-page: 1942
  year: 1997
  end-page: 1946
  ident: bib0110
  article-title: Pure hydrogen production from octane, ethanol, methanol, and methane reforming using a palladium membrane reactor
  publication-title: Proceedings of the Intersociety Energy Conversion Engineering Conference, vol. 32
  contributor:
    fullname: Dye
– volume: 104
  start-page: 244
  year: 2005
  ident: 10.1016/j.memsci.2012.01.004_bib0100
  article-title: A dense Pd/Ag membrane reactor for methanol steam reforming: experimental study
  publication-title: Catal. Today
  doi: 10.1016/j.cattod.2005.03.066
  contributor:
    fullname: Basile
– volume: 93
  start-page: 11
  year: 2003
  ident: 10.1016/j.memsci.2012.01.004_bib0155
  article-title: Preparation and characterization of Pd–Cu composite membranes for hydrogen separation
  publication-title: Chem. Eng. J.
  doi: 10.1016/S1385-8947(02)00106-7
  contributor:
    fullname: Roa
– ident: 10.1016/j.memsci.2012.01.004_bib0195
– volume: 287
  start-page: 147
  year: 2005
  ident: 10.1016/j.memsci.2012.01.004_bib0075
  article-title: A stable, novel catalyst improves hydrogen production in a membrane reactor
  publication-title: Appl. Catal. A: Gen.
  doi: 10.1016/j.apcata.2005.03.018
  contributor:
    fullname: Irusta
– volume: 19
  start-page: 1636
  year: 2007
  ident: 10.1016/j.memsci.2012.01.004_bib0200
  article-title: High molecular permeance in a pore-less ceramic membrane
  publication-title: Adv. Mater.
  doi: 10.1002/adma.200602637
  contributor:
    fullname: Gu
– year: 2011
  ident: 10.1016/j.memsci.2012.01.004_bib0005
– volume: 306
  start-page: 216
  year: 2007
  ident: 10.1016/j.memsci.2012.01.004_bib0170
  article-title: Ultra-thin, hydrogen-selective silica membranes deposited on alumina graded structures prepared from size-controlled boehmite sols
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2007.08.045
  contributor:
    fullname: Gu
– volume: 345
  start-page: 267
  year: 2009
  ident: 10.1016/j.memsci.2012.01.004_bib0180
  article-title: Permeation properties and hydrothermal stability of silica–titania membranes supported on porous alumina substrates
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2009.09.009
  contributor:
    fullname: Gu
– volume: 308
  start-page: 250
  year: 2008
  ident: 10.1016/j.memsci.2012.01.004_bib0120
  article-title: Low temperature ethanol steam reforming in a Pd–Ag membrane reactor: Part 1: Ru-based catalyst
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2007.10.001
  contributor:
    fullname: Tosti
– volume: 176
  start-page: 233
  year: 2000
  ident: 10.1016/j.memsci.2012.01.004_bib0065
  article-title: Highly hydrogen selective ceramic membranes: application to the transformation of greenhouse gases
  publication-title: J. Membr. Sci.
  doi: 10.1016/S0376-7388(00)00448-8
  contributor:
    fullname: Prabhu
– start-page: 1
  year: 2011
  ident: 10.1016/j.memsci.2012.01.004_bib0010
  article-title: Correlations
  contributor:
    fullname: Oyama
– volume: 36
  start-page: 2029
  year: 2011
  ident: 10.1016/j.memsci.2012.01.004_bib0055
  article-title: Ethanol steam reforming reaction in a porous stainless steel supported palladium membrane reactor
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2010.11.020
  contributor:
    fullname: Basile
– volume: 36
  start-page: 1531
  year: 2011
  ident: 10.1016/j.memsci.2012.01.004_bib0040
  article-title: Methane steam reforming in a Pd–Ag membrane reformer: an experimental study on reaction pressure influence at middle temperature
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2010.10.101
  contributor:
    fullname: Basile
– volume: 375
  start-page: 28
  year: 2011
  ident: 10.1016/j.memsci.2012.01.004_bib0015
  article-title: Correlations in palladium membranes for hydrogen separation: a review
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2011.03.057
  contributor:
    fullname: Yun
– volume: 35
  start-page: 6276
  year: 2010
  ident: 10.1016/j.memsci.2012.01.004_bib0035
  article-title: Steam reforming of propane in a fluidized bed membrane reactor for hydrogen production
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2010.03.136
  contributor:
    fullname: Rakib
– volume: 35
  start-page: 3170
  year: 2010
  ident: 10.1016/j.memsci.2012.01.004_bib0135
  article-title: An experimental study on bio-ethanol steam reforming in a catalytic membrane reactor. Part I: Temperature and sweep-gas flow configuration effects
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2009.11.076
  contributor:
    fullname: Iulianelli
– volume: 244
  start-page: 45
  year: 2004
  ident: 10.1016/j.memsci.2012.01.004_bib0205
  article-title: High permeability in a nonporous system: theory of hydrogen permeability in dense silica membranes
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2004.06.046
  contributor:
    fullname: Oyama
– volume: 222
  start-page: 470
  year: 2004
  ident: 10.1016/j.memsci.2012.01.004_bib0190
  article-title: Effect of sodium addition on the performance of Co–ZnO-based catalysts for hydrogen production from bioethanol
  publication-title: J. Catal.
  doi: 10.1016/j.jcat.2003.12.008
  contributor:
    fullname: Llorca
– start-page: 424
  issue: July
  year: 1982
  ident: 10.1016/j.memsci.2012.01.004_bib0220
  article-title: The science of the possible
  publication-title: Chem. Tech.
  contributor:
    fullname: Weisz
– volume: 310
  start-page: 28
  year: 2008
  ident: 10.1016/j.memsci.2012.01.004_bib0175
  article-title: Hydrothermally-stable silica–alumina composite membranes for hydrogen separation
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2007.10.025
  contributor:
    fullname: Gu
– start-page: 1942
  year: 1997
  ident: 10.1016/j.memsci.2012.01.004_bib0110
  article-title: Pure hydrogen production from octane, ethanol, methanol, and methane reforming using a palladium membrane reactor
  contributor:
    fullname: Birdsell
– volume: 308
  start-page: 258
  year: 2008
  ident: 10.1016/j.memsci.2012.01.004_bib0125
  article-title: Low-temperature ethanol steam reforming in a Pd–Ag membrane reactor. Part 2. Pt-based and Ni-based catalysts and general comparison
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2007.09.063
  contributor:
    fullname: Tosti
– volume: 36
  start-page: 1897
  year: 2011
  ident: 10.1016/j.memsci.2012.01.004_bib0030
  article-title: Prioritizing the weights of hydrogen energy technologies in the sector of the hydrogen economy by using a fuzzy AHP approach
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2010.01.035
  contributor:
    fullname: Lee
– volume: 67
  start-page: 223
  year: 1991
  ident: 10.1016/j.memsci.2012.01.004_bib0095
  article-title: Steam reforming of methane in a hydrogen-permeable membrane reactor
  publication-title: Appl. Catal.
  doi: 10.1016/S0166-9834(00)84445-0
  contributor:
    fullname: Uemiya
– volume: 5
  start-page: A84
  year: 2007
  ident: 10.1016/j.memsci.2012.01.004_bib0050
  article-title: Membrane reactor based hydrogen separation from biomass gas: a review of technical advancements and prospects
  publication-title: Int. J. Chem. Reactor Eng.
  doi: 10.2202/1542-6580.1450
  contributor:
    fullname: Smith
– start-page: 25
  year: 2011
  ident: 10.1016/j.memsci.2012.01.004_bib0150
  article-title: Review of silica membranes for hydrogen separation prepared by chemical vapor deposition (CVD)
  contributor:
    fullname: Khativ
– start-page: 94
  issue: December
  year: 1997
  ident: 10.1016/j.memsci.2012.01.004_bib0185
  article-title: Surface time yield of membrane reactors
  publication-title: Cattech
  contributor:
    fullname: Boudart
– volume: 56
  start-page: 315
  year: 1991
  ident: 10.1016/j.memsci.2012.01.004_bib0210
  article-title: Hydrogen permeable palladium–silver alloy membrane supported on porous ceramics
  publication-title: J. Membr. Sci.
  doi: 10.1016/S0376-7388(00)83041-0
  contributor:
    fullname: Uemiya
– volume: 286
  start-page: 226
  year: 2005
  ident: 10.1016/j.memsci.2012.01.004_bib0090
  article-title: Effect of catalytic activity on methane steam reforming in hydrogen-permeable membrane reactor
  publication-title: Appl. Catal. A: Gen.
  doi: 10.1016/j.apcata.2005.03.013
  contributor:
    fullname: Tong
– volume: 351
  start-page: 149
  year: 2010
  ident: 10.1016/j.memsci.2012.01.004_bib0115
  article-title: Reaction of primary and secondary products in a membrane reactor: studies of ethanol steam reforming with a silica–alumina composite membrane
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2010.01.042
  contributor:
    fullname: Lim
– volume: 56
  start-page: 303
  year: 1991
  ident: 10.1016/j.memsci.2012.01.004_bib0215
  article-title: Separation of hydrogen through palladium thin film supported on a porous glass tube
  publication-title: J. Membr. Sci.
  doi: 10.1016/S0376-7388(00)83040-9
  contributor:
    fullname: Uemiya
– volume: 35
  start-page: 2004
  year: 2010
  ident: 10.1016/j.memsci.2012.01.004_bib0145
  article-title: An analytical and experimental investigation of high-pressure catalytic steam reforming of ethanol in a hydrogen selective membrane reactor
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2009.12.042
  contributor:
    fullname: Papadias
– volume: 50
  start-page: 2794
  year: 2004
  ident: 10.1016/j.memsci.2012.01.004_bib0085
  article-title: Methane steam reforming by microporous catalytic membrane reactors
  publication-title: AICHE J.
  doi: 10.1002/aic.10215
  contributor:
    fullname: Tsuru
– volume: 151
  start-page: 351
  year: 2009
  ident: 10.1016/j.memsci.2012.01.004_bib0020
  article-title: An operability level coefficient (OLC) as a useful tool for correlating the performance of membrane reactors
  publication-title: Chem. Eng. Sci.
  doi: 10.1016/j.cej.2009.04.017
  contributor:
    fullname: Oyama
– volume: 15
  start-page: 73
  year: 2006
  ident: 10.1016/j.memsci.2012.01.004_bib0080
  article-title: Studies of the methane steam reforming reaction at high pressure in a ceramic membrane reactor
  publication-title: J. Nat. Gas Chem.
  doi: 10.1016/S1003-9953(06)60011-X
  contributor:
    fullname: Hacarlioglu
– start-page: 61
  year: 2011
  ident: 10.1016/j.memsci.2012.01.004_bib0230
  article-title: Amorphous silica membranes for H2 separation prepared by chemical vapor deposition on hollow fiber supports
  contributor:
    fullname: Iarikov
– volume: 92
  start-page: 17
  year: 2001
  ident: 10.1016/j.memsci.2012.01.004_bib0060
  article-title: Thermodynamic analysis of ethanol processors for fuel cell applications
  publication-title: J. Power Sources
  doi: 10.1016/S0378-7753(00)00498-5
  contributor:
    fullname: Ioannides
– volume: 29
  start-page: 45
  year: 2004
  ident: 10.1016/j.memsci.2012.01.004_bib0070
  article-title: The effect of pressure in membrane reactors: trade-off in permeability and equilibrium conversion in the catalytic reforming of CH4 with CO2 at high pressure
  publication-title: Top. Catal.
  doi: 10.1023/B:TOCA.0000024927.26174.9b
  contributor:
    fullname: Lee
– volume: 337
  start-page: 188
  year: 2009
  ident: 10.1016/j.memsci.2012.01.004_bib0025
  article-title: The boundary between simple and complex descriptions of membrane reactors: the transition between 1-D and 2-D analysis
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2009.03.040
  contributor:
    fullname: Oyama
– volume: 86
  start-page: 121
  year: 2009
  ident: 10.1016/j.memsci.2012.01.004_bib0130
  article-title: Ethanol steam reforming in a membrane reactor with Pt-impregnated Knudsen membranes
  publication-title: Appl. Catal. B: Environ.
  doi: 10.1016/j.apcatb.2008.08.006
  contributor:
    fullname: Yu
– ident: 10.1016/j.memsci.2012.01.004_bib0160
– volume: 267
  start-page: 8
  year: 2005
  ident: 10.1016/j.memsci.2012.01.004_bib0225
  article-title: Development of tubular substrates, silica based membranes and membrane modules for hydrogen separation at high temperature
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2005.05.020
  contributor:
    fullname: Yoshino
– volume: 378
  start-page: 179
  year: 2011
  ident: 10.1016/j.memsci.2012.01.004_bib0165
  article-title: Hydrogen selective thin palladium–copper composite membranes on alumina supports
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2011.04.054
  contributor:
    fullname: Lim
– volume: 35
  start-page: 7142
  year: 2010
  ident: 10.1016/j.memsci.2012.01.004_bib0045
  article-title: Theoretical comparison of packed bed and fluidized bed membrane reactors for methane reforming
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2010.02.050
  contributor:
    fullname: Gallucci
– volume: 35
  start-page: 3159
  year: 2010
  ident: 10.1016/j.memsci.2012.01.004_bib0140
  article-title: An experimental study on bio-ethanol steam reforming in a catalytic membrane reactor. Part II: Reaction pressure, sweep factor and WHSV effects
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2009.11.034
  contributor:
    fullname: Iulianelli
– volume: 46
  start-page: 93
  year: 2003
  ident: 10.1016/j.memsci.2012.01.004_bib0105
  article-title: Steam reforming of methanol on Ni/Al2O3 catalyst in a Pd-membrane reactor
  publication-title: J. Jpn. Petrol. Inst.
  doi: 10.1627/jpi.46.93
  contributor:
    fullname: Kikuchi
SSID ssj0017089
Score 2.3343935
Snippet The performance of membrane reactors fitted with silica-based and palladium-based membranes with hydrogen permeances of 10−8–10−6molm−2s−1Pa−1 was studied and...
The effects of hydrogen permeance and selectivity in the performance of membrane reactors for the ethanol steam reforming (EtOHSR) were studied at 1–10atm and...
The effects of hydrogen permeance and selectivity in the performance of membrane reactors for the ethanol steam reforming (EtOHSR) were studied at 1-10 atm and...
The effects of hydrogen permeance and selectivity on the performance of membrane reactors for ethanol steam reforming (EtOHSR) were studied at 1-10 atm and 623...
SourceID proquest
crossref
pascalfrancis
fao
elsevier
SourceType Aggregation Database
Index Database
Publisher
StartPage 119
SubjectTerms aluminum oxide
artificial membranes
Chemistry
Colloidal state and disperse state
Commercialization
ethanol
Ethanol steam reforming
Exact sciences and technology
General and physical chemistry
hydrogen
industrial applications
Membrane reactor
Membranes
PdCu membranes
Permeance
Porous materials
Selectivity
Silica–alumina membranes
steam
Title Studies of the effect of pressure and hydrogen permeance on the ethanol steam reforming reaction with palladium- and silica-based membranes
URI https://dx.doi.org/10.1016/j.memsci.2012.01.004
https://search.proquest.com/docview/1464498521
https://search.proquest.com/docview/1464506218
Volume 396
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB51txc4ICigbqErV-rV7Np5ODlWFdVC1V7alXqz7Ngui9hktY8DF_4Af5qZOKmoikDilkS25XgmM984n2cATqfWOnTcCU9DYXiqTMqNFxUvfCatT0WQlgLFq-t8Nk8_32V3e3Den4UhWmVn-6NNb61192TSreZktVhMbqaUiCQp0EO1wEYNYB_dkSyGsH_26XJ2_fAzQU3bSnjUnlOH_gRdS_Na-iWOThwv2ebv7Cq2_cFDDYJpiDppNrh6IZa9eGLBW7d08RJedHiSncUpv4I9Xx_A89-yDL6Gnx1XkDWBIdxjkcJBdy0Jdrf2zNSOffnu1g2qE1uhsfakDKypYwfaXm--MVKIJcMJN0SgucereCqC0WYuW9GWvFvslrwdbrOg7UBOXtIxfH2MytGqvoH5xcfb8xnvajDwCn33liNgLKXIrRSBkIlwViUiqTCsQrybZMq6RJW5zYMts0wWvrCuyE2VqiqUVSVd8haGdVP7Q2ChlN4h4DMKg1IrJFpWkauQkREJlZMj4P2661VMtaF7DtpXHeWkSU56KjR2GoHqhaMfqYxGb_CPnocoS23u0Y7q-Y2kLHtUWADB4AjGjwT8MBOEhpTbrxzBSS9xjV8i_V7B5Wt2Gwqi0rQsEA_9vQ0Og7jq6L9n_w6e0V2kD72H4Xa988eIjLZ2DIMPP8S40_9f2g8NcQ
link.rule.ids 315,783,787,4509,24128,27936,27937,45597,45691
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB7xOLQ9VH2KpZS6Uq_Wrp2HkyNCoKXAXmAlbpYd23RRN1nt48Bv4E8zEyeoqFUr9ZaXLcdjz3xjf54B-Day1qHhTngaCsNTZVJuvKh44TNpfSqCtOQoXk7y8TT9fpPdbMFxfxaGaJWd7o86vdXW3ZNh15vDxWw2vBpRIJKkQAvVAhu1DbuIBkqcnbtHZ-fjydNmghq1mfDoe04F-hN0Lc1r7udYO3G8ZBu_s8vY9gcLtR1MQ9RJs8LeCzHtxW8avDVLp2_gdYcn2VFs8lvY8vU7ePVLlMH38NBxBVkTGMI9FikcdNeSYDdLz0zt2I97t2xwOLEFKmtPg4E1dSxAy-vNT0YDYs6wwQ0RaG7xKp6KYLSYyxa0JO9mmzlvq1vNaDmQk5V0DH8fvXLUqh9genpyfTzmXQ4GXqHtXnMEjKUUuZUiEDIRzqpEJBW6VYh3k0xZl6gyt3mwZZbJwhfWFbmpUlWFsqqkSz7CTt3Ufg9YKKV3CPiMQqfUComaVeQqZKREQuXkAHjf73oRQ23onoN2p6OcNMlJj4TGQgNQvXD0syGj0Rr8o-QeylKbW9SjenolKcoeJRZAMDiAw2cCfmoJQkOK7VcO4GsvcY0zkbZXsPuazYqcqDQtC8RDf_8Gq0Fctf_frf8CL8bXlxf64mxy_gle0ptIJTqAnfVy4z8jSlrbw24WPAJccw9l
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Studies+of+the+effect+of+pressure+and+hydrogen+permeance+on+the+ethanol+steam+reforming+reaction+with+palladium-+and+silica-based+membranes&rft.jtitle=Journal+of+membrane+science&rft.au=Lim%2C+Hankwon&rft.au=Gu%2C+Yunfeng&rft.au=Oyama%2C+S.+Ted&rft.date=2012-04-01&rft.pub=Elsevier+B.V&rft.issn=0376-7388&rft.eissn=1873-3123&rft.volume=396&rft.spage=119&rft.epage=127&rft_id=info:doi/10.1016%2Fj.memsci.2012.01.004&rft.externalDocID=S0376738812000117
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0376-7388&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0376-7388&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0376-7388&client=summon