Development of electroactive nanofibers based on thermoplastic polyurethane and poly(o‐ethoxyaniline) for biological applications

Electroactive nanofibers based on thermoplastic polyurethane (TPU) and poly(alkoxy anilines) produced by electrospinning has been explored for biomaterials applications. The thermoplastic polyurethane is a biocompatible polymer with good mechanical properties. The production of TPU nanofibers requir...

Full description

Saved in:
Bibliographic Details
Published inJournal of biomedical materials research. Part A Vol. 105; no. 2; pp. 601 - 607
Main Authors Cruz, Karina Ferreira Noronha, Formaggio, Daniela Maria Ducatti, Tada, Dayane Batista, Cristovan, Fernando Henrique, Guerrini, Lilia Müller
Format Journal Article
LanguageEnglish
Published United States Wiley Subscription Services, Inc 01.02.2017
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Electroactive nanofibers based on thermoplastic polyurethane (TPU) and poly(alkoxy anilines) produced by electrospinning has been explored for biomaterials applications. The thermoplastic polyurethane is a biocompatible polymer with good mechanical properties. The production of TPU nanofibers requires the application of high voltage during electrospinning in order to prepare uniform mats due to its weak ability to elongate during the process. To overcome this limitation, a conductive polymer can be incorporated to the process, allowing generates mats without defects. In this study, poly(o‐ethoxyaniline) POEA doped with dodecylbenzene sulfonic acid (DBSA) was blended with thermoplastic polyurethane (TPU) by solution method. Films were produced by casting and nanofibers were prepared by electrospinning. The effect of the POEA on morphology, distribution of diameter and cell viability of the nanofibers was evaluated. The results demonstrated that the incorporation of POEA in TPU provided to the mats a suitable morphology for cellular growth. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 601–607, 2017.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1549-3296
1552-4965
DOI:10.1002/jbm.a.35928