Mechanical Resonant Sensing of Spin Texture Dynamics in a 2D Antiferromagnet
The coupling between the spin degrees of freedom and macroscopic mechanical motions, including striction, shearing, and rotation, has attracted wide interest with applications in actuation, transduction, and information processing. Experiments so far have established the mechanical responses to the...
Saved in:
Published in | Advanced materials (Weinheim) Vol. 37; no. 29; pp. e2420168 - n/a |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
01.07.2025
John Wiley and Sons Inc |
Subjects | |
Online Access | Get full text |
ISSN | 0935-9648 1521-4095 1521-4095 |
DOI | 10.1002/adma.202420168 |
Cover
Loading…
Abstract | The coupling between the spin degrees of freedom and macroscopic mechanical motions, including striction, shearing, and rotation, has attracted wide interest with applications in actuation, transduction, and information processing. Experiments so far have established the mechanical responses to the long‐range ordered or isolated single spin states. However, it remains elusive whether mechanical motions can couple to a different type of magnetic structure, the non‐collinear spin textures, which exhibit nanoscale spatial variations of spin (domain walls, skyrmions, etc.) and are promising candidates to realize high‐speed computing devices. Here, collective spin texture dynamics is detected with nanoelectromechanical resonators fabricated from 2D antiferromagnetic (AFM) MnPS3 with 10−9 strain sensitivity. By examining radio frequency mechanical oscillations under magnetic fields, new magnetic transitions are identified with sharp dips in resonant frequency. They are attributed to collective AFM domain wall motions as supported by the analytical modeling of magnetostriction and large‐scale spin‐dynamics simulations. Additionally, an abnormally large modulation in the mechanical nonlinearity at the transition field infers a fluid‐like response due to ultrafast domain motion. The work establishes a strong coupling between spin texture and mechanical dynamics, laying the foundation for electromechanical manipulation of spin texture and developing quantum hybrid devices.
Detection of antiferromagnetic spin texture in a 2D magnetic crystal is achieved through nanomechanical resonators at radio frequencies. Sharp magnetic transitions that lead to abrupt changes in mechanical linear and nonlinear responses are assigned to antiferromagnetic domain motions. The results indicate rich and fluid‐like dynamics between the coupled spin and lattice at the transition field. |
---|---|
AbstractList | The coupling between the spin degrees of freedom and macroscopic mechanical motions, including striction, shearing, and rotation, has attracted wide interest with applications in actuation, transduction, and information processing. Experiments so far have established the mechanical responses to the long‐range ordered or isolated single spin states. However, it remains elusive whether mechanical motions can couple to a different type of magnetic structure, the non‐collinear spin textures, which exhibit nanoscale spatial variations of spin (domain walls, skyrmions, etc.) and are promising candidates to realize high‐speed computing devices. Here, collective spin texture dynamics is detected with nanoelectromechanical resonators fabricated from 2D antiferromagnetic (AFM) MnPS3 with 10−9 strain sensitivity. By examining radio frequency mechanical oscillations under magnetic fields, new magnetic transitions are identified with sharp dips in resonant frequency. They are attributed to collective AFM domain wall motions as supported by the analytical modeling of magnetostriction and large‐scale spin‐dynamics simulations. Additionally, an abnormally large modulation in the mechanical nonlinearity at the transition field infers a fluid‐like response due to ultrafast domain motion. The work establishes a strong coupling between spin texture and mechanical dynamics, laying the foundation for electromechanical manipulation of spin texture and developing quantum hybrid devices. The coupling between the spin degrees of freedom and macroscopic mechanical motions, including striction, shearing, and rotation, has attracted wide interest with applications in actuation, transduction, and information processing. Experiments so far have established the mechanical responses to the long-range ordered or isolated single spin states. However, it remains elusive whether mechanical motions can couple to a different type of magnetic structure, the non-collinear spin textures, which exhibit nanoscale spatial variations of spin (domain walls, skyrmions, etc.) and are promising candidates to realize high-speed computing devices. Here, collective spin texture dynamics is detected with nanoelectromechanical resonators fabricated from 2D antiferromagnetic (AFM) MnPS with 10 strain sensitivity. By examining radio frequency mechanical oscillations under magnetic fields, new magnetic transitions are identified with sharp dips in resonant frequency. They are attributed to collective AFM domain wall motions as supported by the analytical modeling of magnetostriction and large-scale spin-dynamics simulations. Additionally, an abnormally large modulation in the mechanical nonlinearity at the transition field infers a fluid-like response due to ultrafast domain motion. The work establishes a strong coupling between spin texture and mechanical dynamics, laying the foundation for electromechanical manipulation of spin texture and developing quantum hybrid devices. The coupling between the spin degrees of freedom and macroscopic mechanical motions, including striction, shearing, and rotation, has attracted wide interest with applications in actuation, transduction, and information processing. Experiments so far have established the mechanical responses to the long‐range ordered or isolated single spin states. However, it remains elusive whether mechanical motions can couple to a different type of magnetic structure, the non‐collinear spin textures, which exhibit nanoscale spatial variations of spin (domain walls, skyrmions, etc .) and are promising candidates to realize high‐speed computing devices. Here, collective spin texture dynamics is detected with nanoelectromechanical resonators fabricated from 2D antiferromagnetic (AFM) MnPS 3 with 10 −9 strain sensitivity. By examining radio frequency mechanical oscillations under magnetic fields, new magnetic transitions are identified with sharp dips in resonant frequency. They are attributed to collective AFM domain wall motions as supported by the analytical modeling of magnetostriction and large‐scale spin‐dynamics simulations. Additionally, an abnormally large modulation in the mechanical nonlinearity at the transition field infers a fluid‐like response due to ultrafast domain motion. The work establishes a strong coupling between spin texture and mechanical dynamics, laying the foundation for electromechanical manipulation of spin texture and developing quantum hybrid devices. Detection of antiferromagnetic spin texture in a 2D magnetic crystal is achieved through nanomechanical resonators at radio frequencies. Sharp magnetic transitions that lead to abrupt changes in mechanical linear and nonlinear responses are assigned to antiferromagnetic domain motions. The results indicate rich and fluid‐like dynamics between the coupled spin and lattice at the transition field. The coupling between the spin degrees of freedom and macroscopic mechanical motions, including striction, shearing, and rotation, has attracted wide interest with applications in actuation, transduction, and information processing. Experiments so far have established the mechanical responses to the long-range ordered or isolated single spin states. However, it remains elusive whether mechanical motions can couple to a different type of magnetic structure, the non-collinear spin textures, which exhibit nanoscale spatial variations of spin (domain walls, skyrmions, etc.) and are promising candidates to realize high-speed computing devices. Here, collective spin texture dynamics is detected with nanoelectromechanical resonators fabricated from 2D antiferromagnetic (AFM) MnPS3 with 10-9 strain sensitivity. By examining radio frequency mechanical oscillations under magnetic fields, new magnetic transitions are identified with sharp dips in resonant frequency. They are attributed to collective AFM domain wall motions as supported by the analytical modeling of magnetostriction and large-scale spin-dynamics simulations. Additionally, an abnormally large modulation in the mechanical nonlinearity at the transition field infers a fluid-like response due to ultrafast domain motion. The work establishes a strong coupling between spin texture and mechanical dynamics, laying the foundation for electromechanical manipulation of spin texture and developing quantum hybrid devices.The coupling between the spin degrees of freedom and macroscopic mechanical motions, including striction, shearing, and rotation, has attracted wide interest with applications in actuation, transduction, and information processing. Experiments so far have established the mechanical responses to the long-range ordered or isolated single spin states. However, it remains elusive whether mechanical motions can couple to a different type of magnetic structure, the non-collinear spin textures, which exhibit nanoscale spatial variations of spin (domain walls, skyrmions, etc.) and are promising candidates to realize high-speed computing devices. Here, collective spin texture dynamics is detected with nanoelectromechanical resonators fabricated from 2D antiferromagnetic (AFM) MnPS3 with 10-9 strain sensitivity. By examining radio frequency mechanical oscillations under magnetic fields, new magnetic transitions are identified with sharp dips in resonant frequency. They are attributed to collective AFM domain wall motions as supported by the analytical modeling of magnetostriction and large-scale spin-dynamics simulations. Additionally, an abnormally large modulation in the mechanical nonlinearity at the transition field infers a fluid-like response due to ultrafast domain motion. The work establishes a strong coupling between spin texture and mechanical dynamics, laying the foundation for electromechanical manipulation of spin texture and developing quantum hybrid devices. The coupling between the spin degrees of freedom and macroscopic mechanical motions, including striction, shearing, and rotation, has attracted wide interest with applications in actuation, transduction, and information processing. Experiments so far have established the mechanical responses to the long‐range ordered or isolated single spin states. However, it remains elusive whether mechanical motions can couple to a different type of magnetic structure, the non‐collinear spin textures, which exhibit nanoscale spatial variations of spin (domain walls, skyrmions, etc .) and are promising candidates to realize high‐speed computing devices. Here, collective spin texture dynamics is detected with nanoelectromechanical resonators fabricated from 2D antiferromagnetic (AFM) MnPS 3 with 10 −9 strain sensitivity. By examining radio frequency mechanical oscillations under magnetic fields, new magnetic transitions are identified with sharp dips in resonant frequency. They are attributed to collective AFM domain wall motions as supported by the analytical modeling of magnetostriction and large‐scale spin‐dynamics simulations. Additionally, an abnormally large modulation in the mechanical nonlinearity at the transition field infers a fluid‐like response due to ultrafast domain motion. The work establishes a strong coupling between spin texture and mechanical dynamics, laying the foundation for electromechanical manipulation of spin texture and developing quantum hybrid devices. The coupling between the spin degrees of freedom and macroscopic mechanical motions, including striction, shearing, and rotation, has attracted wide interest with applications in actuation, transduction, and information processing. Experiments so far have established the mechanical responses to the long‐range ordered or isolated single spin states. However, it remains elusive whether mechanical motions can couple to a different type of magnetic structure, the non‐collinear spin textures, which exhibit nanoscale spatial variations of spin (domain walls, skyrmions, etc.) and are promising candidates to realize high‐speed computing devices. Here, collective spin texture dynamics is detected with nanoelectromechanical resonators fabricated from 2D antiferromagnetic (AFM) MnPS3 with 10−9 strain sensitivity. By examining radio frequency mechanical oscillations under magnetic fields, new magnetic transitions are identified with sharp dips in resonant frequency. They are attributed to collective AFM domain wall motions as supported by the analytical modeling of magnetostriction and large‐scale spin‐dynamics simulations. Additionally, an abnormally large modulation in the mechanical nonlinearity at the transition field infers a fluid‐like response due to ultrafast domain motion. The work establishes a strong coupling between spin texture and mechanical dynamics, laying the foundation for electromechanical manipulation of spin texture and developing quantum hybrid devices. Detection of antiferromagnetic spin texture in a 2D magnetic crystal is achieved through nanomechanical resonators at radio frequencies. Sharp magnetic transitions that lead to abrupt changes in mechanical linear and nonlinear responses are assigned to antiferromagnetic domain motions. The results indicate rich and fluid‐like dynamics between the coupled spin and lattice at the transition field. |
Author | Wang, Yunong Tarantini, Chiara Feng, Philip X.‐L. Smirnov, Dmitry Xiang, Li Yousuf, S M Enamul Hoque Zhang, Xiao‐Xiao McGill, Stephen Ramachandran, Shreyas Santos, Elton J. G. Koptur‐Palenchar, John |
AuthorAffiliation | 5 Donostia International Physics Centre (DIPC) Donostia‐San Sebastian 20018 Spain 4 National High Magnetic Field Laboratory Tallahassee FL 32312 USA 1 Department of Electrical & Computer Engineering University of Florida Gainesville FL 32611 USA 3 Department of Physics University of Florida Gainesville FL 32611 USA 2 Institute for Condensed Matter Physics and Complex Systems School of Physics and Astronomy The University of Edinburgh Edinburgh EH9 3FD UK 6 Higgs Centre for Theoretical Physics The University of Edinburgh Edinburgh EH9 3FD UK |
AuthorAffiliation_xml | – name: 5 Donostia International Physics Centre (DIPC) Donostia‐San Sebastian 20018 Spain – name: 4 National High Magnetic Field Laboratory Tallahassee FL 32312 USA – name: 6 Higgs Centre for Theoretical Physics The University of Edinburgh Edinburgh EH9 3FD UK – name: 2 Institute for Condensed Matter Physics and Complex Systems School of Physics and Astronomy The University of Edinburgh Edinburgh EH9 3FD UK – name: 1 Department of Electrical & Computer Engineering University of Florida Gainesville FL 32611 USA – name: 3 Department of Physics University of Florida Gainesville FL 32611 USA |
Author_xml | – sequence: 1 givenname: S M Enamul Hoque surname: Yousuf fullname: Yousuf, S M Enamul Hoque organization: University of Florida – sequence: 2 givenname: Yunong surname: Wang fullname: Wang, Yunong organization: University of Florida – sequence: 3 givenname: Shreyas surname: Ramachandran fullname: Ramachandran, Shreyas organization: The University of Edinburgh – sequence: 4 givenname: John surname: Koptur‐Palenchar fullname: Koptur‐Palenchar, John organization: University of Florida – sequence: 5 givenname: Chiara surname: Tarantini fullname: Tarantini, Chiara organization: National High Magnetic Field Laboratory – sequence: 6 givenname: Li surname: Xiang fullname: Xiang, Li organization: National High Magnetic Field Laboratory – sequence: 7 givenname: Stephen surname: McGill fullname: McGill, Stephen organization: National High Magnetic Field Laboratory – sequence: 8 givenname: Dmitry surname: Smirnov fullname: Smirnov, Dmitry organization: National High Magnetic Field Laboratory – sequence: 9 givenname: Elton J. G. surname: Santos fullname: Santos, Elton J. G. email: esantos@ed.ac.uk organization: The University of Edinburgh – sequence: 10 givenname: Philip X.‐L. surname: Feng fullname: Feng, Philip X.‐L. email: philip.feng@ufl.edu organization: University of Florida – sequence: 11 givenname: Xiao‐Xiao orcidid: 0000-0002-5447-3394 surname: Zhang fullname: Zhang, Xiao‐Xiao email: xxzhang@ufl.edu organization: University of Florida |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/40304113$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkUtv1DAUhS3Uik4LW5YoEhs2mV6_EnuFRp3ykKZComVteZKbqavEHuwEmH9fV1OmhQ0r69rfOTq-55Qc-eCRkDcU5hSAndt2sHMGTDCglXpBZlQyWgrQ8ojMQHNZ6kqoE3Ka0h0A6Aqql-REAAdBKZ-R1RU2t9a7xvbFN0zBWz8W1-iT85sidMX11vniBn-PU8RiufN2cE0q8p0t2LJY-NF1GGMY7Mbj-Iocd7ZP-PrxPCPfP17eXHwuV18_fblYrMpGsEqVVat1J6XodNdQ2yidZ6rWlivGGQKDNRVtC63miKxiraQMuRbSgujqWgI_Ix_2vttpPWDboB-j7c02usHGnQnWmb9fvLs1m_DTUMaUqpXODu8fHWL4MWEazeBSg31vPYYpGU51XUkqap7Rd_-gd2GKPv_P8Jy3plrWVabePo90yPJn0xmY74EmhpQidgeEgnmo0jxUaQ5VZoHeC365Hnf_oc1iebV40t4DFg2gVQ |
Cites_doi | 10.1038/s41586-021-04306-4 10.1016/j.physrep.2022.03.002 10.1038/s41563-020-0712-x 10.1016/j.matdes.2006.12.016 10.1002/adma.202004138 10.1088/0953-8984/10/28/020 10.1103/PhysRevMaterials.5.064413 10.1126/science.aay0668 10.1103/RevModPhys.90.015005 10.1038/s41567-023-02061-z 10.1103/PhysRevB.91.235425 10.1126/science.abj7478 10.1038/nphys3411 10.1021/acs.nanolett.9b05165 10.1126/science.aav4450 10.1103/PhysRevLett.134.056701 10.1038/s41563-020-0713-9 10.1038/s41928-019-0360-9 10.1038/s41467-020-16430-2 10.1126/sciadv.aao6653 10.1038/s41567-018-0049-4 10.1126/science.1231390 10.1021/acs.nanolett.2c02629 10.1103/PhysRevB.82.100408 10.1038/s41467-023-39123-y 10.1143/JPSJ.55.4456 10.1103/RevModPhys.84.119 10.1038/s41467-020-17566-x 10.1088/0034-4885/18/1/305 10.1038/s41565-019-0438-6 10.1038/s41563-023-01735-6 10.1038/s41586-018-0822-7 10.1038/s41586-020-2775-x 10.1088/0953-8984/26/10/103202 10.1021/acsnano.1c09150 10.1088/0953-8984/12/8/327 10.1016/j.physrep.2022.06.001 10.1103/PhysRevB.74.094422 10.1021/acsnano.2c04995 10.1038/s42254-019-0110-y 10.1038/natrevmats.2017.31 10.1093/nsr/nwac154 10.1143/JPSJ.52.3919 10.1002/9783527626359.ch1 10.1002/adma.202211634 10.1038/s41524-020-00416-1 10.1038/s41524-021-00683-6 10.1021/acs.nanolett.8b03315 10.1038/nature02658 10.1038/s41586-023-06279-y 10.1038/nnano.2017.86 10.1126/science.1145799 |
ContentType | Journal Article |
Copyright | 2025 The Author(s). Advanced Materials published by Wiley‐VCH GmbH 2025 The Author(s). Advanced Materials published by Wiley‐VCH GmbH. 2025. This work is published under Creative Commons Attribution License~https://creativecommons.org/licenses/by/3.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2025 Wiley‐VCH GmbH. |
Copyright_xml | – notice: 2025 The Author(s). Advanced Materials published by Wiley‐VCH GmbH – notice: 2025 The Author(s). Advanced Materials published by Wiley‐VCH GmbH. – notice: 2025. This work is published under Creative Commons Attribution License~https://creativecommons.org/licenses/by/3.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2025 Wiley‐VCH GmbH. |
DBID | 24P AAYXX CITATION NPM 7SR 8BQ 8FD JG9 7X8 5PM |
DOI | 10.1002/adma.202420168 |
DatabaseName | Wiley Online Library Open Access (WRLC) CrossRef PubMed Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX MEDLINE - Academic |
DatabaseTitleList | Materials Research Database PubMed MEDLINE - Academic CrossRef |
Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1521-4095 |
EndPage | n/a |
ExternalDocumentID | PMC12288789 40304113 10_1002_adma_202420168 ADMA202420168 |
Genre | researchArticle Journal Article |
GrantInformation_xml | – fundername: DOE BES Program funderid: DE‐SC0022983 – fundername: NSF QuSeC‐TAQS Program funderid: OSI‐2326528 – fundername: NSF National High Magnetic Field Laboratory funderid: DMR‐2128556* – fundername: EPSRC funderid: EP/P020267/1; EP/X035891/1; EP/T021578/1 – fundername: NSF IUSE Program funderid: DUE‐2142552 – fundername: NSF IUSE Program grantid: DUE-2142552 – fundername: EPSRC grantid: EP/P020267/1 – fundername: EPSRC grantid: EP/X035891/1 – fundername: NSF QuSeC-TAQS Program grantid: OSI-2326528 – fundername: EPSRC grantid: EP/T021578/1 – fundername: NSF National High Magnetic Field Laboratory grantid: DMR-2128556* – fundername: DOE BES Program grantid: DE-SC0022983 – fundername: ; grantid: OSI‐2326528 – fundername: ; grantid: DUE‐2142552 – fundername: ; grantid: DMR‐2128556* – fundername: ; grantid: EP/P020267/1; EP/X035891/1; EP/T021578/1 – fundername: ; grantid: DE‐SC0022983 |
GroupedDBID | --- .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 24P 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHQN AAMMB AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABIJN ABJNI ABLJU ABPVW ACAHQ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEFGJ AEIGN AEIMD AENEX AEUYR AEYWJ AFBPY AFFPM AFGKR AFWVQ AFZJQ AGHNM AGXDD AGYGG AHBTC AIDQK AIDYY AITYG AIURR AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RX1 RYL SUPJJ TN5 UB1 UPT V2E W8V W99 WBKPD WFSAM WIB WIH WIK WJL WOHZO WQJ WXSBR WYISQ XG1 XPP XV2 YR2 ZZTAW ~02 ~IA ~WT .Y3 31~ 53G 6TJ 8WZ A6W AANHP AASGY AAYXX ABEML ACBWZ ACRPL ACSCC ACYXJ ADMLS ADNMO AETEA AFFNX AGQPQ ASPBG AVWKF AZFZN CITATION EJD FEDTE FOJGT HF~ HVGLF LW6 M6K NDZJH PALCI RIWAO RJQFR SAMSI WTY ZY4 NPM 7SR 8BQ 8FD JG9 7X8 5PM |
ID | FETCH-LOGICAL-c4268-6d99f554f9fc1ac89d9918ba38232e020b14dd0d93ee262d512e3945a04f77503 |
IEDL.DBID | DR2 |
ISSN | 0935-9648 1521-4095 |
IngestDate | Thu Aug 21 18:24:47 EDT 2025 Fri Jul 11 18:42:47 EDT 2025 Tue Jul 29 16:48:20 EDT 2025 Tue Jul 29 01:38:06 EDT 2025 Thu Jul 31 00:09:32 EDT 2025 Fri Jul 25 09:40:50 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 29 |
Keywords | spintronics NEMS magnetic properties 2D materials |
Language | English |
License | Attribution 2025 The Author(s). Advanced Materials published by Wiley‐VCH GmbH. This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4268-6d99f554f9fc1ac89d9918ba38232e020b14dd0d93ee262d512e3945a04f77503 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-5447-3394 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.202420168 |
PMID | 40304113 |
PQID | 3232719576 |
PQPubID | 2045203 |
PageCount | 9 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_12288789 proquest_miscellaneous_3197651473 proquest_journals_3232719576 pubmed_primary_40304113 crossref_primary_10_1002_adma_202420168 wiley_primary_10_1002_adma_202420168_ADMA202420168 |
PublicationCentury | 2000 |
PublicationDate | 2025-07-01 |
PublicationDateYYYYMMDD | 2025-07-01 |
PublicationDate_xml | – month: 07 year: 2025 text: 2025-07-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim – name: Hoboken |
PublicationTitle | Advanced materials (Weinheim) |
PublicationTitleAlternate | Adv Mater |
PublicationYear | 2025 |
Publisher | Wiley Subscription Services, Inc John Wiley and Sons Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc – name: John Wiley and Sons Inc |
References | 2023; 35 2006; 74 2017; 2 2020; 20 2019; 14 2014; 26 2023; 620 2019; 565 1983; 52 2022; 979 2020; 367 2020; 11 2022; 22 2020; 19 2019; 363 2020; 6 2020; 3 1955; 18 2018; 4 2021; 33 2000; 12 2008; 29 2015; 91 2024; 23 1998; 10 2022; 602 2022; 965 2025; 134 2021; 5 2023; 14 2023; 17 2019; 1 1986; 55 2023; 19 2015; 11 2008 1996 2020; 586 2008; 320 2010; 82 2004; 430 2018; 18 2013; 339 2022; 8 2017; 12 2018; 90 2022; 10 2021; 374 2022; 16 2018; 14 2012; 84 e_1_2_9_31_1 e_1_2_9_52_1 e_1_2_9_50_1 e_1_2_9_10_1 e_1_2_9_35_1 e_1_2_9_12_1 e_1_2_9_33_1 e_1_2_9_14_1 e_1_2_9_16_1 e_1_2_9_37_1 e_1_2_9_18_1 e_1_2_9_41_1 e_1_2_9_20_1 e_1_2_9_22_1 e_1_2_9_45_1 e_1_2_9_24_1 e_1_2_9_43_1 e_1_2_9_8_1 e_1_2_9_6_1 e_1_2_9_4_1 e_1_2_9_2_1 e_1_2_9_26_1 e_1_2_9_49_1 e_1_2_9_28_1 e_1_2_9_47_1 e_1_2_9_30_1 e_1_2_9_53_1 e_1_2_9_51_1 e_1_2_9_11_1 e_1_2_9_34_1 Gurevich A. G. (e_1_2_9_39_1) 1996 e_1_2_9_13_1 e_1_2_9_32_1 e_1_2_9_15_1 e_1_2_9_38_1 e_1_2_9_17_1 e_1_2_9_36_1 e_1_2_9_19_1 e_1_2_9_42_1 e_1_2_9_40_1 e_1_2_9_21_1 e_1_2_9_46_1 e_1_2_9_23_1 e_1_2_9_44_1 e_1_2_9_7_1 e_1_2_9_5_1 e_1_2_9_3_1 e_1_2_9_1_1 e_1_2_9_9_1 e_1_2_9_25_1 e_1_2_9_27_1 e_1_2_9_48_1 e_1_2_9_29_1 |
References_xml | – volume: 91 year: 2015 publication-title: Phys. Rev. B – volume: 20 start-page: 2452 year: 2020 publication-title: Nano Lett. – volume: 23 start-page: 212 year: 2024 publication-title: Nat. Mater. – volume: 14 start-page: 408 year: 2019 publication-title: Nat. Nanotechnol. – volume: 90 year: 2018 publication-title: Rev. Mod. Phys. – volume: 374 start-page: 1140 year: 2021 publication-title: Science – volume: 5 year: 2021 publication-title: Phys. Rev. Mater. – volume: 1 start-page: 646 year: 2019 publication-title: Nat. Rev. Phys. – volume: 320 start-page: 190 year: 2008 publication-title: Science – volume: 12 start-page: 631 year: 2017 publication-title: Nat. Nanotechnol. – volume: 33 year: 2021 publication-title: Adv. Mater. – volume: 363 year: 2019 publication-title: Science – volume: 18 start-page: 7194 year: 2018 publication-title: Nano Lett. – volume: 18 start-page: 184 year: 1955 publication-title: Rep. Prog. Phys. – volume: 586 start-page: 232 year: 2020 publication-title: Nature – volume: 565 start-page: 209 year: 2019 publication-title: Nature – volume: 11 start-page: 2698 year: 2020 publication-title: Nat. Commun. – volume: 10 year: 2022 publication-title: Natl. Sci. Rev. – volume: 19 start-page: 838 year: 2020 publication-title: Nat. Mater. – volume: 74 year: 2006 publication-title: Phys. Rev. B – volume: 12 start-page: 1845 year: 2000 publication-title: J. Phys.: Condens. Matter. – volume: 8 start-page: 3 year: 2022 publication-title: npj Comput. Mater. – volume: 55 start-page: 4456 year: 1986 publication-title: J. Phys. Soc. Jpn. – volume: 16 start-page: 6960 year: 2022 publication-title: ACS Nano. – volume: 134 year: 2025 publication-title: Phys. Rev. Lett. – volume: 19 start-page: 1150 year: 2023 publication-title: Nat. Phys. – volume: 19 start-page: 1295 year: 2020 publication-title: Nat. Mater. – year: 1996 – volume: 4 year: 2018 publication-title: Sci. Adv. – volume: 35 year: 2023 publication-title: Adv. Mater. – volume: 620 start-page: 988 year: 2023 publication-title: Nature – volume: 11 start-page: 3860 year: 2020 publication-title: Nat. Commun. – volume: 602 start-page: 73 year: 2022 publication-title: Nature – volume: 430 start-page: 329 year: 2004 publication-title: Nature – volume: 82 year: 2010 publication-title: Phys. Rev. B – volume: 2 year: 2017 publication-title: Nat. Rev. Mater. – volume: 339 start-page: 1051 year: 2013 publication-title: Science – volume: 29 start-page: 469 year: 2008 publication-title: Mater. Des. – volume: 52 start-page: 3919 year: 1983 publication-title: J. Phys. Soc. Jpn. – volume: 17 start-page: 1916 year: 2023 publication-title: ACS Nano. – volume: 84 start-page: 119 year: 2012 publication-title: Rev. Mod. Phys. – start-page: 1 year: 2008 – volume: 367 year: 2020 publication-title: Science – volume: 22 start-page: 9831 year: 2022 publication-title: Nano Lett. – volume: 979 start-page: 1 year: 2022 publication-title: Phys. Rep. – volume: 26 year: 2014 publication-title: J. Phys.: Condens. Matter. – volume: 6 start-page: 150 year: 2020 publication-title: npj Comput. Mater. – volume: 10 start-page: 6417 year: 1998 publication-title: J. Phys.: Condens. Matter. – volume: 14 start-page: 213 year: 2018 publication-title: Nat. Phys. – volume: 14 start-page: 3396 year: 2023 publication-title: Nat. Commun. – volume: 11 start-page: 820 year: 2015 publication-title: Nat. Phys. – volume: 965 start-page: 1 year: 2022 publication-title: Phys. Rep. – volume: 3 start-page: 360 year: 2020 publication-title: Nat. Electron. – ident: e_1_2_9_4_1 doi: 10.1038/s41586-021-04306-4 – ident: e_1_2_9_7_1 doi: 10.1016/j.physrep.2022.03.002 – ident: e_1_2_9_32_1 doi: 10.1038/s41563-020-0712-x – ident: e_1_2_9_5_1 doi: 10.1016/j.matdes.2006.12.016 – ident: e_1_2_9_51_1 doi: 10.1002/adma.202004138 – ident: e_1_2_9_43_1 doi: 10.1088/0953-8984/10/28/020 – volume-title: Magnetization Oscillations and Waves year: 1996 ident: e_1_2_9_39_1 – ident: e_1_2_9_38_1 doi: 10.1103/PhysRevMaterials.5.064413 – ident: e_1_2_9_15_1 doi: 10.1126/science.aay0668 – ident: e_1_2_9_20_1 doi: 10.1103/RevModPhys.90.015005 – ident: e_1_2_9_27_1 doi: 10.1038/s41567-023-02061-z – ident: e_1_2_9_42_1 doi: 10.1103/PhysRevB.91.235425 – ident: e_1_2_9_26_1 doi: 10.1126/science.abj7478 – ident: e_1_2_9_30_1 doi: 10.1038/nphys3411 – ident: e_1_2_9_36_1 doi: 10.1021/acs.nanolett.9b05165 – ident: e_1_2_9_22_1 doi: 10.1126/science.aav4450 – ident: e_1_2_9_18_1 doi: 10.1103/PhysRevLett.134.056701 – ident: e_1_2_9_21_1 doi: 10.1038/s41563-020-0713-9 – ident: e_1_2_9_9_1 doi: 10.1038/s41928-019-0360-9 – ident: e_1_2_9_33_1 doi: 10.1038/s41467-020-16430-2 – ident: e_1_2_9_47_1 doi: 10.1126/sciadv.aao6653 – ident: e_1_2_9_12_1 doi: 10.1038/s41567-018-0049-4 – ident: e_1_2_9_31_1 doi: 10.1126/science.1231390 – ident: e_1_2_9_48_1 doi: 10.1021/acs.nanolett.2c02629 – ident: e_1_2_9_37_1 doi: 10.1103/PhysRevB.82.100408 – ident: e_1_2_9_19_1 doi: 10.1038/s41467-023-39123-y – ident: e_1_2_9_35_1 doi: 10.1143/JPSJ.55.4456 – ident: e_1_2_9_13_1 doi: 10.1103/RevModPhys.84.119 – ident: e_1_2_9_29_1 doi: 10.1038/s41467-020-17566-x – ident: e_1_2_9_1_1 doi: 10.1088/0034-4885/18/1/305 – ident: e_1_2_9_23_1 doi: 10.1038/s41565-019-0438-6 – ident: e_1_2_9_53_1 doi: 10.1038/s41563-023-01735-6 – ident: e_1_2_9_3_1 doi: 10.1038/s41586-018-0822-7 – ident: e_1_2_9_14_1 doi: 10.1038/s41586-020-2775-x – ident: e_1_2_9_49_1 doi: 10.1088/0953-8984/26/10/103202 – ident: e_1_2_9_25_1 doi: 10.1021/acsnano.1c09150 – ident: e_1_2_9_44_1 doi: 10.1088/0953-8984/12/8/327 – ident: e_1_2_9_6_1 doi: 10.1016/j.physrep.2022.06.001 – ident: e_1_2_9_45_1 doi: 10.1103/PhysRevB.74.094422 – ident: e_1_2_9_46_1 doi: 10.1021/acsnano.2c04995 – ident: e_1_2_9_24_1 doi: 10.1038/s42254-019-0110-y – ident: e_1_2_9_11_1 doi: 10.1038/natrevmats.2017.31 – ident: e_1_2_9_17_1 doi: 10.1093/nsr/nwac154 – ident: e_1_2_9_34_1 doi: 10.1143/JPSJ.52.3919 – ident: e_1_2_9_41_1 doi: 10.1002/9783527626359.ch1 – ident: e_1_2_9_16_1 doi: 10.1002/adma.202211634 – ident: e_1_2_9_52_1 doi: 10.1038/s41524-020-00416-1 – ident: e_1_2_9_50_1 doi: 10.1038/s41524-021-00683-6 – ident: e_1_2_9_28_1 doi: 10.1021/acs.nanolett.8b03315 – ident: e_1_2_9_8_1 doi: 10.1038/nature02658 – ident: e_1_2_9_2_1 doi: 10.1038/s41586-023-06279-y – ident: e_1_2_9_40_1 doi: 10.1038/nnano.2017.86 – ident: e_1_2_9_10_1 doi: 10.1126/science.1145799 |
SSID | ssj0009606 |
Score | 2.4815588 |
Snippet | The coupling between the spin degrees of freedom and macroscopic mechanical motions, including striction, shearing, and rotation, has attracted wide interest... |
SourceID | pubmedcentral proquest pubmed crossref wiley |
SourceType | Open Access Repository Aggregation Database Index Database Publisher |
StartPage | e2420168 |
SubjectTerms | 2D materials Actuation Antiferromagnetism Coupling Data processing Domain walls Hypothetical particles magnetic properties Magnetic structure Magnetic transitions Magnetostriction NEMS Particle theory Resonant frequencies Shearing Spin dynamics spintronics Strain Texture |
Title | Mechanical Resonant Sensing of Spin Texture Dynamics in a 2D Antiferromagnet |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.202420168 https://www.ncbi.nlm.nih.gov/pubmed/40304113 https://www.proquest.com/docview/3232719576 https://www.proquest.com/docview/3197651473 https://pubmed.ncbi.nlm.nih.gov/PMC12288789 |
Volume | 37 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB4VTuVAoaUlBVauhNRTdmPHefi4YkEIdauqLBK3yK8AQmTRPi799Z1JdsMuHJDgmNhWbI_H8zkz8xngOPelFrzUoctyHcokFqG2CQ-dUcYioDWppQTn4e_0_EpeXCfXK1n8DT9E-8ONNKPer0nBtZn2nkhDtat5g9DEIGqhbF8K2CJU9PeJP4rgeU22FyehSmW-ZG2MRG-9-bpVegE1X0ZMriLZ2hSdfQK9HEQTgXLfnc9M1_57xu_4nlHuwPYCp7J-s7B24YOvPsPWCnvhF_g19JQ2TFJm5AWgkBp2SQHx1Q0bl-zy8a5iI9z85xPPBs3N91OG7zQTA9anKCU_mYwf9E3lZ3twdXY6OjkPF5czhBaNeh6mTqkSsUipSsu1zRU-o2g1-RWFRxBquHQucir2XqTCIbDwsZKJjmSZkfP0K2xW48rvA6MzqfJSG66cNLFVkeQ2c07aUngZ-QB-LoVTPDYcHEXDtiwKmp-inZ8ADpeyKxa6OC1i7FDGFR6sAvjRFqMWkWtEV348xzocYRlixywO4Fsj6vZTkrzHnGNJvrYI2grE0L1eUt3d1kzdXAjcxHMVgKiF_Er3i_5g2G-fvr-l0QF8FHRDcR1QfAibs8ncHyFsmpkObAj5p1MryH834Q_f |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BOUAPvGkDBYyExClt7DgPH1dsqwV2e6BbiVvk2E5ZVfVW290D_HpmnE3apQekcnRsK7bH4_nsGX8G-Fi6Rgve6NgWpY5llopYm4zHtla1QUBb54YuOE-O89Gp_Poj66IJ6S5Myw_RH7iRZoT1mhScDqQPrllDtQ3EQWhjELaU9-EBPesddlXfrxmkCKAHur00i1Uuy463MREHm_U37dItsHk7ZvImlg3G6OgJ1F032hiU8_3Vst43v_9iePyvfj6Fx2uoygbt3HoG95x_Dts3CAxfwHji6OYwCZqRI4CiatgJxcT7MzZv2MnlzLMprv-rhWPDX15fzMwVw2-aiSEbUKCSWyzmF_rMu-VLOD06nH4exev3GWKDdr2Mc6tUg3CkUY3h2pQK0yhdTa5F4RCH1lxam1iVOidyYRFbuFTJTCeyKch_-gq2_Ny7XWC0LVVO6porK-vUqERyU1grTSOcTFwEnzrpVJctDUfVEi6Lisan6scngr1OeNVaHa-qFBtUcIV7qwg-9NmoSOQd0d7NV1iGIzJD-FikEey0su5_JcmBzDnmlBuzoC9AJN2bOX72M5B1cyFwHS9VBCJI-R_NrwbDyaBPvb5LpffwcDSdjKvxl-Nvb-CRoAeLQ3zxHmwtFyv3FlHUsn4X9OQPxsATIw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fb9MwED7BkBA8MH4TGGAkJJ6yxY6T2I_VsmrAOiG2SXuLHNsZFZpbde0D_PXcJW3WsodJ8OjYVmyfz_fZd_4M8FH5xgjemNgVysQyS0VsbMZjV-vaIqCtc0sXnEfH-eGZ_HKena_d4u_4IfoDN9KMdr0mBZ-6Zu-aNNS4ljcITQyiFnUX7sk8UTSvy-_XBFKEz1u2vTSLdS7VirYxEXub9TfN0g2seTNkch3KtrZouA1m1YsuBOXn7mJe79rffxE8_k83H8OjJVBlg25mPYE7PjyFh2v0hc_gaOTp3jCJmZEbgGJq2AlFxIcLNmnYyXQc2Cmu_ouZZ-WvYC7H9orhN8NEyQYUpuRns8mluQh-_hzOhgen-4fx8nWG2KJVV3HutG4QjDS6sdxYpTGNsjXkWBQeUWjNpXOJ06n3IhcOkYVPtcxMIpuCvKcvYCtMgn8FjDal2ktTc-1knVqdSG4L56RthJeJj-DTSjjVtCPhqDq6ZVHR-FT9-ESws5JdtVTGqyrFBhVc484qgg99NqoR-UZM8JMFluGIyxA8FmkELztR97-S5D7mHHPUxiToCxBF92ZOGP9oqbq5ELiKKx2BaIV8S_OrQTka9KnX_1LpPdz_Vg6ro8_HX9_AA0GvFbfBxTuwNZ8t_FuEUPP6XaslfwCWWhHb |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mechanical+Resonant+Sensing+of+Spin+Texture+Dynamics+in+a+2D+Antiferromagnet&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Yousuf%2C+S+M+Enamul+Hoque&rft.au=Wang%2C+Yunong&rft.au=Ramachandran%2C+Shreyas&rft.au=Koptur%E2%80%90Palenchar%2C+John&rft.date=2025-07-01&rft.issn=0935-9648&rft.eissn=1521-4095&rft.volume=37&rft.issue=29&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fadma.202420168&rft.externalDBID=10.1002%252Fadma.202420168&rft.externalDocID=ADMA202420168 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon |