Mechanical Resonant Sensing of Spin Texture Dynamics in a 2D Antiferromagnet

The coupling between the spin degrees of freedom and macroscopic mechanical motions, including striction, shearing, and rotation, has attracted wide interest with applications in actuation, transduction, and information processing. Experiments so far have established the mechanical responses to the...

Full description

Saved in:
Bibliographic Details
Published inAdvanced materials (Weinheim) Vol. 37; no. 29; pp. e2420168 - n/a
Main Authors Yousuf, S M Enamul Hoque, Wang, Yunong, Ramachandran, Shreyas, Koptur‐Palenchar, John, Tarantini, Chiara, Xiang, Li, McGill, Stephen, Smirnov, Dmitry, Santos, Elton J. G., Feng, Philip X.‐L., Zhang, Xiao‐Xiao
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 01.07.2025
John Wiley and Sons Inc
Subjects
Online AccessGet full text
ISSN0935-9648
1521-4095
1521-4095
DOI10.1002/adma.202420168

Cover

Loading…
Abstract The coupling between the spin degrees of freedom and macroscopic mechanical motions, including striction, shearing, and rotation, has attracted wide interest with applications in actuation, transduction, and information processing. Experiments so far have established the mechanical responses to the long‐range ordered or isolated single spin states. However, it remains elusive whether mechanical motions can couple to a different type of magnetic structure, the non‐collinear spin textures, which exhibit nanoscale spatial variations of spin (domain walls, skyrmions, etc.) and are promising candidates to realize high‐speed computing devices. Here, collective spin texture dynamics is detected with nanoelectromechanical resonators fabricated from 2D antiferromagnetic (AFM) MnPS3 with 10−9 strain sensitivity. By examining radio frequency mechanical oscillations under magnetic fields, new magnetic transitions are identified with sharp dips in resonant frequency. They are attributed to collective AFM domain wall motions as supported by the analytical modeling of magnetostriction and large‐scale spin‐dynamics simulations. Additionally, an abnormally large modulation in the mechanical nonlinearity at the transition field infers a fluid‐like response due to ultrafast domain motion. The work establishes a strong coupling between spin texture and mechanical dynamics, laying the foundation for electromechanical manipulation of spin texture and developing quantum hybrid devices. Detection of antiferromagnetic spin texture in a 2D magnetic crystal is achieved through nanomechanical resonators at radio frequencies. Sharp magnetic transitions that lead to abrupt changes in mechanical linear and nonlinear responses are assigned to antiferromagnetic domain motions. The results indicate rich and fluid‐like dynamics between the coupled spin and lattice at the transition field.
AbstractList The coupling between the spin degrees of freedom and macroscopic mechanical motions, including striction, shearing, and rotation, has attracted wide interest with applications in actuation, transduction, and information processing. Experiments so far have established the mechanical responses to the long‐range ordered or isolated single spin states. However, it remains elusive whether mechanical motions can couple to a different type of magnetic structure, the non‐collinear spin textures, which exhibit nanoscale spatial variations of spin (domain walls, skyrmions, etc.) and are promising candidates to realize high‐speed computing devices. Here, collective spin texture dynamics is detected with nanoelectromechanical resonators fabricated from 2D antiferromagnetic (AFM) MnPS3 with 10−9 strain sensitivity. By examining radio frequency mechanical oscillations under magnetic fields, new magnetic transitions are identified with sharp dips in resonant frequency. They are attributed to collective AFM domain wall motions as supported by the analytical modeling of magnetostriction and large‐scale spin‐dynamics simulations. Additionally, an abnormally large modulation in the mechanical nonlinearity at the transition field infers a fluid‐like response due to ultrafast domain motion. The work establishes a strong coupling between spin texture and mechanical dynamics, laying the foundation for electromechanical manipulation of spin texture and developing quantum hybrid devices.
The coupling between the spin degrees of freedom and macroscopic mechanical motions, including striction, shearing, and rotation, has attracted wide interest with applications in actuation, transduction, and information processing. Experiments so far have established the mechanical responses to the long-range ordered or isolated single spin states. However, it remains elusive whether mechanical motions can couple to a different type of magnetic structure, the non-collinear spin textures, which exhibit nanoscale spatial variations of spin (domain walls, skyrmions, etc.) and are promising candidates to realize high-speed computing devices. Here, collective spin texture dynamics is detected with nanoelectromechanical resonators fabricated from 2D antiferromagnetic (AFM) MnPS with 10 strain sensitivity. By examining radio frequency mechanical oscillations under magnetic fields, new magnetic transitions are identified with sharp dips in resonant frequency. They are attributed to collective AFM domain wall motions as supported by the analytical modeling of magnetostriction and large-scale spin-dynamics simulations. Additionally, an abnormally large modulation in the mechanical nonlinearity at the transition field infers a fluid-like response due to ultrafast domain motion. The work establishes a strong coupling between spin texture and mechanical dynamics, laying the foundation for electromechanical manipulation of spin texture and developing quantum hybrid devices.
The coupling between the spin degrees of freedom and macroscopic mechanical motions, including striction, shearing, and rotation, has attracted wide interest with applications in actuation, transduction, and information processing. Experiments so far have established the mechanical responses to the long‐range ordered or isolated single spin states. However, it remains elusive whether mechanical motions can couple to a different type of magnetic structure, the non‐collinear spin textures, which exhibit nanoscale spatial variations of spin (domain walls, skyrmions, etc .) and are promising candidates to realize high‐speed computing devices. Here, collective spin texture dynamics is detected with nanoelectromechanical resonators fabricated from 2D antiferromagnetic (AFM) MnPS 3 with 10 −9 strain sensitivity. By examining radio frequency mechanical oscillations under magnetic fields, new magnetic transitions are identified with sharp dips in resonant frequency. They are attributed to collective AFM domain wall motions as supported by the analytical modeling of magnetostriction and large‐scale spin‐dynamics simulations. Additionally, an abnormally large modulation in the mechanical nonlinearity at the transition field infers a fluid‐like response due to ultrafast domain motion. The work establishes a strong coupling between spin texture and mechanical dynamics, laying the foundation for electromechanical manipulation of spin texture and developing quantum hybrid devices. Detection of antiferromagnetic spin texture in a 2D magnetic crystal is achieved through nanomechanical resonators at radio frequencies. Sharp magnetic transitions that lead to abrupt changes in mechanical linear and nonlinear responses are assigned to antiferromagnetic domain motions. The results indicate rich and fluid‐like dynamics between the coupled spin and lattice at the transition field.
The coupling between the spin degrees of freedom and macroscopic mechanical motions, including striction, shearing, and rotation, has attracted wide interest with applications in actuation, transduction, and information processing. Experiments so far have established the mechanical responses to the long-range ordered or isolated single spin states. However, it remains elusive whether mechanical motions can couple to a different type of magnetic structure, the non-collinear spin textures, which exhibit nanoscale spatial variations of spin (domain walls, skyrmions, etc.) and are promising candidates to realize high-speed computing devices. Here, collective spin texture dynamics is detected with nanoelectromechanical resonators fabricated from 2D antiferromagnetic (AFM) MnPS3 with 10-9 strain sensitivity. By examining radio frequency mechanical oscillations under magnetic fields, new magnetic transitions are identified with sharp dips in resonant frequency. They are attributed to collective AFM domain wall motions as supported by the analytical modeling of magnetostriction and large-scale spin-dynamics simulations. Additionally, an abnormally large modulation in the mechanical nonlinearity at the transition field infers a fluid-like response due to ultrafast domain motion. The work establishes a strong coupling between spin texture and mechanical dynamics, laying the foundation for electromechanical manipulation of spin texture and developing quantum hybrid devices.The coupling between the spin degrees of freedom and macroscopic mechanical motions, including striction, shearing, and rotation, has attracted wide interest with applications in actuation, transduction, and information processing. Experiments so far have established the mechanical responses to the long-range ordered or isolated single spin states. However, it remains elusive whether mechanical motions can couple to a different type of magnetic structure, the non-collinear spin textures, which exhibit nanoscale spatial variations of spin (domain walls, skyrmions, etc.) and are promising candidates to realize high-speed computing devices. Here, collective spin texture dynamics is detected with nanoelectromechanical resonators fabricated from 2D antiferromagnetic (AFM) MnPS3 with 10-9 strain sensitivity. By examining radio frequency mechanical oscillations under magnetic fields, new magnetic transitions are identified with sharp dips in resonant frequency. They are attributed to collective AFM domain wall motions as supported by the analytical modeling of magnetostriction and large-scale spin-dynamics simulations. Additionally, an abnormally large modulation in the mechanical nonlinearity at the transition field infers a fluid-like response due to ultrafast domain motion. The work establishes a strong coupling between spin texture and mechanical dynamics, laying the foundation for electromechanical manipulation of spin texture and developing quantum hybrid devices.
The coupling between the spin degrees of freedom and macroscopic mechanical motions, including striction, shearing, and rotation, has attracted wide interest with applications in actuation, transduction, and information processing. Experiments so far have established the mechanical responses to the long‐range ordered or isolated single spin states. However, it remains elusive whether mechanical motions can couple to a different type of magnetic structure, the non‐collinear spin textures, which exhibit nanoscale spatial variations of spin (domain walls, skyrmions, etc .) and are promising candidates to realize high‐speed computing devices. Here, collective spin texture dynamics is detected with nanoelectromechanical resonators fabricated from 2D antiferromagnetic (AFM) MnPS 3 with 10 −9 strain sensitivity. By examining radio frequency mechanical oscillations under magnetic fields, new magnetic transitions are identified with sharp dips in resonant frequency. They are attributed to collective AFM domain wall motions as supported by the analytical modeling of magnetostriction and large‐scale spin‐dynamics simulations. Additionally, an abnormally large modulation in the mechanical nonlinearity at the transition field infers a fluid‐like response due to ultrafast domain motion. The work establishes a strong coupling between spin texture and mechanical dynamics, laying the foundation for electromechanical manipulation of spin texture and developing quantum hybrid devices.
The coupling between the spin degrees of freedom and macroscopic mechanical motions, including striction, shearing, and rotation, has attracted wide interest with applications in actuation, transduction, and information processing. Experiments so far have established the mechanical responses to the long‐range ordered or isolated single spin states. However, it remains elusive whether mechanical motions can couple to a different type of magnetic structure, the non‐collinear spin textures, which exhibit nanoscale spatial variations of spin (domain walls, skyrmions, etc.) and are promising candidates to realize high‐speed computing devices. Here, collective spin texture dynamics is detected with nanoelectromechanical resonators fabricated from 2D antiferromagnetic (AFM) MnPS3 with 10−9 strain sensitivity. By examining radio frequency mechanical oscillations under magnetic fields, new magnetic transitions are identified with sharp dips in resonant frequency. They are attributed to collective AFM domain wall motions as supported by the analytical modeling of magnetostriction and large‐scale spin‐dynamics simulations. Additionally, an abnormally large modulation in the mechanical nonlinearity at the transition field infers a fluid‐like response due to ultrafast domain motion. The work establishes a strong coupling between spin texture and mechanical dynamics, laying the foundation for electromechanical manipulation of spin texture and developing quantum hybrid devices. Detection of antiferromagnetic spin texture in a 2D magnetic crystal is achieved through nanomechanical resonators at radio frequencies. Sharp magnetic transitions that lead to abrupt changes in mechanical linear and nonlinear responses are assigned to antiferromagnetic domain motions. The results indicate rich and fluid‐like dynamics between the coupled spin and lattice at the transition field.
Author Wang, Yunong
Tarantini, Chiara
Feng, Philip X.‐L.
Smirnov, Dmitry
Xiang, Li
Yousuf, S M Enamul Hoque
Zhang, Xiao‐Xiao
McGill, Stephen
Ramachandran, Shreyas
Santos, Elton J. G.
Koptur‐Palenchar, John
AuthorAffiliation 5 Donostia International Physics Centre (DIPC) Donostia‐San Sebastian 20018 Spain
4 National High Magnetic Field Laboratory Tallahassee FL 32312 USA
1 Department of Electrical & Computer Engineering University of Florida Gainesville FL 32611 USA
3 Department of Physics University of Florida Gainesville FL 32611 USA
2 Institute for Condensed Matter Physics and Complex Systems School of Physics and Astronomy The University of Edinburgh Edinburgh EH9 3FD UK
6 Higgs Centre for Theoretical Physics The University of Edinburgh Edinburgh EH9 3FD UK
AuthorAffiliation_xml – name: 5 Donostia International Physics Centre (DIPC) Donostia‐San Sebastian 20018 Spain
– name: 4 National High Magnetic Field Laboratory Tallahassee FL 32312 USA
– name: 6 Higgs Centre for Theoretical Physics The University of Edinburgh Edinburgh EH9 3FD UK
– name: 2 Institute for Condensed Matter Physics and Complex Systems School of Physics and Astronomy The University of Edinburgh Edinburgh EH9 3FD UK
– name: 1 Department of Electrical & Computer Engineering University of Florida Gainesville FL 32611 USA
– name: 3 Department of Physics University of Florida Gainesville FL 32611 USA
Author_xml – sequence: 1
  givenname: S M Enamul Hoque
  surname: Yousuf
  fullname: Yousuf, S M Enamul Hoque
  organization: University of Florida
– sequence: 2
  givenname: Yunong
  surname: Wang
  fullname: Wang, Yunong
  organization: University of Florida
– sequence: 3
  givenname: Shreyas
  surname: Ramachandran
  fullname: Ramachandran, Shreyas
  organization: The University of Edinburgh
– sequence: 4
  givenname: John
  surname: Koptur‐Palenchar
  fullname: Koptur‐Palenchar, John
  organization: University of Florida
– sequence: 5
  givenname: Chiara
  surname: Tarantini
  fullname: Tarantini, Chiara
  organization: National High Magnetic Field Laboratory
– sequence: 6
  givenname: Li
  surname: Xiang
  fullname: Xiang, Li
  organization: National High Magnetic Field Laboratory
– sequence: 7
  givenname: Stephen
  surname: McGill
  fullname: McGill, Stephen
  organization: National High Magnetic Field Laboratory
– sequence: 8
  givenname: Dmitry
  surname: Smirnov
  fullname: Smirnov, Dmitry
  organization: National High Magnetic Field Laboratory
– sequence: 9
  givenname: Elton J. G.
  surname: Santos
  fullname: Santos, Elton J. G.
  email: esantos@ed.ac.uk
  organization: The University of Edinburgh
– sequence: 10
  givenname: Philip X.‐L.
  surname: Feng
  fullname: Feng, Philip X.‐L.
  email: philip.feng@ufl.edu
  organization: University of Florida
– sequence: 11
  givenname: Xiao‐Xiao
  orcidid: 0000-0002-5447-3394
  surname: Zhang
  fullname: Zhang, Xiao‐Xiao
  email: xxzhang@ufl.edu
  organization: University of Florida
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40304113$$D View this record in MEDLINE/PubMed
BookMark eNqFkUtv1DAUhS3Uik4LW5YoEhs2mV6_EnuFRp3ykKZComVteZKbqavEHuwEmH9fV1OmhQ0r69rfOTq-55Qc-eCRkDcU5hSAndt2sHMGTDCglXpBZlQyWgrQ8ojMQHNZ6kqoE3Ka0h0A6Aqql-REAAdBKZ-R1RU2t9a7xvbFN0zBWz8W1-iT85sidMX11vniBn-PU8RiufN2cE0q8p0t2LJY-NF1GGMY7Mbj-Iocd7ZP-PrxPCPfP17eXHwuV18_fblYrMpGsEqVVat1J6XodNdQ2yidZ6rWlivGGQKDNRVtC63miKxiraQMuRbSgujqWgI_Ix_2vttpPWDboB-j7c02usHGnQnWmb9fvLs1m_DTUMaUqpXODu8fHWL4MWEazeBSg31vPYYpGU51XUkqap7Rd_-gd2GKPv_P8Jy3plrWVabePo90yPJn0xmY74EmhpQidgeEgnmo0jxUaQ5VZoHeC365Hnf_oc1iebV40t4DFg2gVQ
Cites_doi 10.1038/s41586-021-04306-4
10.1016/j.physrep.2022.03.002
10.1038/s41563-020-0712-x
10.1016/j.matdes.2006.12.016
10.1002/adma.202004138
10.1088/0953-8984/10/28/020
10.1103/PhysRevMaterials.5.064413
10.1126/science.aay0668
10.1103/RevModPhys.90.015005
10.1038/s41567-023-02061-z
10.1103/PhysRevB.91.235425
10.1126/science.abj7478
10.1038/nphys3411
10.1021/acs.nanolett.9b05165
10.1126/science.aav4450
10.1103/PhysRevLett.134.056701
10.1038/s41563-020-0713-9
10.1038/s41928-019-0360-9
10.1038/s41467-020-16430-2
10.1126/sciadv.aao6653
10.1038/s41567-018-0049-4
10.1126/science.1231390
10.1021/acs.nanolett.2c02629
10.1103/PhysRevB.82.100408
10.1038/s41467-023-39123-y
10.1143/JPSJ.55.4456
10.1103/RevModPhys.84.119
10.1038/s41467-020-17566-x
10.1088/0034-4885/18/1/305
10.1038/s41565-019-0438-6
10.1038/s41563-023-01735-6
10.1038/s41586-018-0822-7
10.1038/s41586-020-2775-x
10.1088/0953-8984/26/10/103202
10.1021/acsnano.1c09150
10.1088/0953-8984/12/8/327
10.1016/j.physrep.2022.06.001
10.1103/PhysRevB.74.094422
10.1021/acsnano.2c04995
10.1038/s42254-019-0110-y
10.1038/natrevmats.2017.31
10.1093/nsr/nwac154
10.1143/JPSJ.52.3919
10.1002/9783527626359.ch1
10.1002/adma.202211634
10.1038/s41524-020-00416-1
10.1038/s41524-021-00683-6
10.1021/acs.nanolett.8b03315
10.1038/nature02658
10.1038/s41586-023-06279-y
10.1038/nnano.2017.86
10.1126/science.1145799
ContentType Journal Article
Copyright 2025 The Author(s). Advanced Materials published by Wiley‐VCH GmbH
2025 The Author(s). Advanced Materials published by Wiley‐VCH GmbH.
2025. This work is published under Creative Commons Attribution License~https://creativecommons.org/licenses/by/3.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2025 Wiley‐VCH GmbH.
Copyright_xml – notice: 2025 The Author(s). Advanced Materials published by Wiley‐VCH GmbH
– notice: 2025 The Author(s). Advanced Materials published by Wiley‐VCH GmbH.
– notice: 2025. This work is published under Creative Commons Attribution License~https://creativecommons.org/licenses/by/3.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2025 Wiley‐VCH GmbH.
DBID 24P
AAYXX
CITATION
NPM
7SR
8BQ
8FD
JG9
7X8
5PM
DOI 10.1002/adma.202420168
DatabaseName Wiley Online Library Open Access (WRLC)
CrossRef
PubMed
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
MEDLINE - Academic
DatabaseTitleList Materials Research Database
PubMed

MEDLINE - Academic
CrossRef

Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1521-4095
EndPage n/a
ExternalDocumentID PMC12288789
40304113
10_1002_adma_202420168
ADMA202420168
Genre researchArticle
Journal Article
GrantInformation_xml – fundername: DOE BES Program
  funderid: DE‐SC0022983
– fundername: NSF QuSeC‐TAQS Program
  funderid: OSI‐2326528
– fundername: NSF National High Magnetic Field Laboratory
  funderid: DMR‐2128556*
– fundername: EPSRC
  funderid: EP/P020267/1; EP/X035891/1; EP/T021578/1
– fundername: NSF IUSE Program
  funderid: DUE‐2142552
– fundername: NSF IUSE Program
  grantid: DUE-2142552
– fundername: EPSRC
  grantid: EP/P020267/1
– fundername: EPSRC
  grantid: EP/X035891/1
– fundername: NSF QuSeC-TAQS Program
  grantid: OSI-2326528
– fundername: EPSRC
  grantid: EP/T021578/1
– fundername: NSF National High Magnetic Field Laboratory
  grantid: DMR-2128556*
– fundername: DOE BES Program
  grantid: DE-SC0022983
– fundername: ;
  grantid: OSI‐2326528
– fundername: ;
  grantid: DUE‐2142552
– fundername: ;
  grantid: DMR‐2128556*
– fundername: ;
  grantid: EP/P020267/1; EP/X035891/1; EP/T021578/1
– fundername: ;
  grantid: DE‐SC0022983
GroupedDBID ---
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
24P
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHQN
AAMMB
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABLJU
ABPVW
ACAHQ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEFGJ
AEIGN
AEIMD
AENEX
AEUYR
AEYWJ
AFBPY
AFFPM
AFGKR
AFWVQ
AFZJQ
AGHNM
AGXDD
AGYGG
AHBTC
AIDQK
AIDYY
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RX1
RYL
SUPJJ
TN5
UB1
UPT
V2E
W8V
W99
WBKPD
WFSAM
WIB
WIH
WIK
WJL
WOHZO
WQJ
WXSBR
WYISQ
XG1
XPP
XV2
YR2
ZZTAW
~02
~IA
~WT
.Y3
31~
53G
6TJ
8WZ
A6W
AANHP
AASGY
AAYXX
ABEML
ACBWZ
ACRPL
ACSCC
ACYXJ
ADMLS
ADNMO
AETEA
AFFNX
AGQPQ
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
FOJGT
HF~
HVGLF
LW6
M6K
NDZJH
PALCI
RIWAO
RJQFR
SAMSI
WTY
ZY4
NPM
7SR
8BQ
8FD
JG9
7X8
5PM
ID FETCH-LOGICAL-c4268-6d99f554f9fc1ac89d9918ba38232e020b14dd0d93ee262d512e3945a04f77503
IEDL.DBID DR2
ISSN 0935-9648
1521-4095
IngestDate Thu Aug 21 18:24:47 EDT 2025
Fri Jul 11 18:42:47 EDT 2025
Tue Jul 29 16:48:20 EDT 2025
Tue Jul 29 01:38:06 EDT 2025
Thu Jul 31 00:09:32 EDT 2025
Fri Jul 25 09:40:50 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 29
Keywords spintronics
NEMS
magnetic properties
2D materials
Language English
License Attribution
2025 The Author(s). Advanced Materials published by Wiley‐VCH GmbH.
This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4268-6d99f554f9fc1ac89d9918ba38232e020b14dd0d93ee262d512e3945a04f77503
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-5447-3394
OpenAccessLink https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.202420168
PMID 40304113
PQID 3232719576
PQPubID 2045203
PageCount 9
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_12288789
proquest_miscellaneous_3197651473
proquest_journals_3232719576
pubmed_primary_40304113
crossref_primary_10_1002_adma_202420168
wiley_primary_10_1002_adma_202420168_ADMA202420168
PublicationCentury 2000
PublicationDate 2025-07-01
PublicationDateYYYYMMDD 2025-07-01
PublicationDate_xml – month: 07
  year: 2025
  text: 2025-07-01
  day: 01
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
– name: Hoboken
PublicationTitle Advanced materials (Weinheim)
PublicationTitleAlternate Adv Mater
PublicationYear 2025
Publisher Wiley Subscription Services, Inc
John Wiley and Sons Inc
Publisher_xml – name: Wiley Subscription Services, Inc
– name: John Wiley and Sons Inc
References 2023; 35
2006; 74
2017; 2
2020; 20
2019; 14
2014; 26
2023; 620
2019; 565
1983; 52
2022; 979
2020; 367
2020; 11
2022; 22
2020; 19
2019; 363
2020; 6
2020; 3
1955; 18
2018; 4
2021; 33
2000; 12
2008; 29
2015; 91
2024; 23
1998; 10
2022; 602
2022; 965
2025; 134
2021; 5
2023; 14
2023; 17
2019; 1
1986; 55
2023; 19
2015; 11
2008
1996
2020; 586
2008; 320
2010; 82
2004; 430
2018; 18
2013; 339
2022; 8
2017; 12
2018; 90
2022; 10
2021; 374
2022; 16
2018; 14
2012; 84
e_1_2_9_31_1
e_1_2_9_52_1
e_1_2_9_50_1
e_1_2_9_10_1
e_1_2_9_35_1
e_1_2_9_12_1
e_1_2_9_33_1
e_1_2_9_14_1
e_1_2_9_16_1
e_1_2_9_37_1
e_1_2_9_18_1
e_1_2_9_41_1
e_1_2_9_20_1
e_1_2_9_22_1
e_1_2_9_45_1
e_1_2_9_24_1
e_1_2_9_43_1
e_1_2_9_8_1
e_1_2_9_6_1
e_1_2_9_4_1
e_1_2_9_2_1
e_1_2_9_26_1
e_1_2_9_49_1
e_1_2_9_28_1
e_1_2_9_47_1
e_1_2_9_30_1
e_1_2_9_53_1
e_1_2_9_51_1
e_1_2_9_11_1
e_1_2_9_34_1
Gurevich A. G. (e_1_2_9_39_1) 1996
e_1_2_9_13_1
e_1_2_9_32_1
e_1_2_9_15_1
e_1_2_9_38_1
e_1_2_9_17_1
e_1_2_9_36_1
e_1_2_9_19_1
e_1_2_9_42_1
e_1_2_9_40_1
e_1_2_9_21_1
e_1_2_9_46_1
e_1_2_9_23_1
e_1_2_9_44_1
e_1_2_9_7_1
e_1_2_9_5_1
e_1_2_9_3_1
e_1_2_9_1_1
e_1_2_9_9_1
e_1_2_9_25_1
e_1_2_9_27_1
e_1_2_9_48_1
e_1_2_9_29_1
References_xml – volume: 91
  year: 2015
  publication-title: Phys. Rev. B
– volume: 20
  start-page: 2452
  year: 2020
  publication-title: Nano Lett.
– volume: 23
  start-page: 212
  year: 2024
  publication-title: Nat. Mater.
– volume: 14
  start-page: 408
  year: 2019
  publication-title: Nat. Nanotechnol.
– volume: 90
  year: 2018
  publication-title: Rev. Mod. Phys.
– volume: 374
  start-page: 1140
  year: 2021
  publication-title: Science
– volume: 5
  year: 2021
  publication-title: Phys. Rev. Mater.
– volume: 1
  start-page: 646
  year: 2019
  publication-title: Nat. Rev. Phys.
– volume: 320
  start-page: 190
  year: 2008
  publication-title: Science
– volume: 12
  start-page: 631
  year: 2017
  publication-title: Nat. Nanotechnol.
– volume: 33
  year: 2021
  publication-title: Adv. Mater.
– volume: 363
  year: 2019
  publication-title: Science
– volume: 18
  start-page: 7194
  year: 2018
  publication-title: Nano Lett.
– volume: 18
  start-page: 184
  year: 1955
  publication-title: Rep. Prog. Phys.
– volume: 586
  start-page: 232
  year: 2020
  publication-title: Nature
– volume: 565
  start-page: 209
  year: 2019
  publication-title: Nature
– volume: 11
  start-page: 2698
  year: 2020
  publication-title: Nat. Commun.
– volume: 10
  year: 2022
  publication-title: Natl. Sci. Rev.
– volume: 19
  start-page: 838
  year: 2020
  publication-title: Nat. Mater.
– volume: 74
  year: 2006
  publication-title: Phys. Rev. B
– volume: 12
  start-page: 1845
  year: 2000
  publication-title: J. Phys.: Condens. Matter.
– volume: 8
  start-page: 3
  year: 2022
  publication-title: npj Comput. Mater.
– volume: 55
  start-page: 4456
  year: 1986
  publication-title: J. Phys. Soc. Jpn.
– volume: 16
  start-page: 6960
  year: 2022
  publication-title: ACS Nano.
– volume: 134
  year: 2025
  publication-title: Phys. Rev. Lett.
– volume: 19
  start-page: 1150
  year: 2023
  publication-title: Nat. Phys.
– volume: 19
  start-page: 1295
  year: 2020
  publication-title: Nat. Mater.
– year: 1996
– volume: 4
  year: 2018
  publication-title: Sci. Adv.
– volume: 35
  year: 2023
  publication-title: Adv. Mater.
– volume: 620
  start-page: 988
  year: 2023
  publication-title: Nature
– volume: 11
  start-page: 3860
  year: 2020
  publication-title: Nat. Commun.
– volume: 602
  start-page: 73
  year: 2022
  publication-title: Nature
– volume: 430
  start-page: 329
  year: 2004
  publication-title: Nature
– volume: 82
  year: 2010
  publication-title: Phys. Rev. B
– volume: 2
  year: 2017
  publication-title: Nat. Rev. Mater.
– volume: 339
  start-page: 1051
  year: 2013
  publication-title: Science
– volume: 29
  start-page: 469
  year: 2008
  publication-title: Mater. Des.
– volume: 52
  start-page: 3919
  year: 1983
  publication-title: J. Phys. Soc. Jpn.
– volume: 17
  start-page: 1916
  year: 2023
  publication-title: ACS Nano.
– volume: 84
  start-page: 119
  year: 2012
  publication-title: Rev. Mod. Phys.
– start-page: 1
  year: 2008
– volume: 367
  year: 2020
  publication-title: Science
– volume: 22
  start-page: 9831
  year: 2022
  publication-title: Nano Lett.
– volume: 979
  start-page: 1
  year: 2022
  publication-title: Phys. Rep.
– volume: 26
  year: 2014
  publication-title: J. Phys.: Condens. Matter.
– volume: 6
  start-page: 150
  year: 2020
  publication-title: npj Comput. Mater.
– volume: 10
  start-page: 6417
  year: 1998
  publication-title: J. Phys.: Condens. Matter.
– volume: 14
  start-page: 213
  year: 2018
  publication-title: Nat. Phys.
– volume: 14
  start-page: 3396
  year: 2023
  publication-title: Nat. Commun.
– volume: 11
  start-page: 820
  year: 2015
  publication-title: Nat. Phys.
– volume: 965
  start-page: 1
  year: 2022
  publication-title: Phys. Rep.
– volume: 3
  start-page: 360
  year: 2020
  publication-title: Nat. Electron.
– ident: e_1_2_9_4_1
  doi: 10.1038/s41586-021-04306-4
– ident: e_1_2_9_7_1
  doi: 10.1016/j.physrep.2022.03.002
– ident: e_1_2_9_32_1
  doi: 10.1038/s41563-020-0712-x
– ident: e_1_2_9_5_1
  doi: 10.1016/j.matdes.2006.12.016
– ident: e_1_2_9_51_1
  doi: 10.1002/adma.202004138
– ident: e_1_2_9_43_1
  doi: 10.1088/0953-8984/10/28/020
– volume-title: Magnetization Oscillations and Waves
  year: 1996
  ident: e_1_2_9_39_1
– ident: e_1_2_9_38_1
  doi: 10.1103/PhysRevMaterials.5.064413
– ident: e_1_2_9_15_1
  doi: 10.1126/science.aay0668
– ident: e_1_2_9_20_1
  doi: 10.1103/RevModPhys.90.015005
– ident: e_1_2_9_27_1
  doi: 10.1038/s41567-023-02061-z
– ident: e_1_2_9_42_1
  doi: 10.1103/PhysRevB.91.235425
– ident: e_1_2_9_26_1
  doi: 10.1126/science.abj7478
– ident: e_1_2_9_30_1
  doi: 10.1038/nphys3411
– ident: e_1_2_9_36_1
  doi: 10.1021/acs.nanolett.9b05165
– ident: e_1_2_9_22_1
  doi: 10.1126/science.aav4450
– ident: e_1_2_9_18_1
  doi: 10.1103/PhysRevLett.134.056701
– ident: e_1_2_9_21_1
  doi: 10.1038/s41563-020-0713-9
– ident: e_1_2_9_9_1
  doi: 10.1038/s41928-019-0360-9
– ident: e_1_2_9_33_1
  doi: 10.1038/s41467-020-16430-2
– ident: e_1_2_9_47_1
  doi: 10.1126/sciadv.aao6653
– ident: e_1_2_9_12_1
  doi: 10.1038/s41567-018-0049-4
– ident: e_1_2_9_31_1
  doi: 10.1126/science.1231390
– ident: e_1_2_9_48_1
  doi: 10.1021/acs.nanolett.2c02629
– ident: e_1_2_9_37_1
  doi: 10.1103/PhysRevB.82.100408
– ident: e_1_2_9_19_1
  doi: 10.1038/s41467-023-39123-y
– ident: e_1_2_9_35_1
  doi: 10.1143/JPSJ.55.4456
– ident: e_1_2_9_13_1
  doi: 10.1103/RevModPhys.84.119
– ident: e_1_2_9_29_1
  doi: 10.1038/s41467-020-17566-x
– ident: e_1_2_9_1_1
  doi: 10.1088/0034-4885/18/1/305
– ident: e_1_2_9_23_1
  doi: 10.1038/s41565-019-0438-6
– ident: e_1_2_9_53_1
  doi: 10.1038/s41563-023-01735-6
– ident: e_1_2_9_3_1
  doi: 10.1038/s41586-018-0822-7
– ident: e_1_2_9_14_1
  doi: 10.1038/s41586-020-2775-x
– ident: e_1_2_9_49_1
  doi: 10.1088/0953-8984/26/10/103202
– ident: e_1_2_9_25_1
  doi: 10.1021/acsnano.1c09150
– ident: e_1_2_9_44_1
  doi: 10.1088/0953-8984/12/8/327
– ident: e_1_2_9_6_1
  doi: 10.1016/j.physrep.2022.06.001
– ident: e_1_2_9_45_1
  doi: 10.1103/PhysRevB.74.094422
– ident: e_1_2_9_46_1
  doi: 10.1021/acsnano.2c04995
– ident: e_1_2_9_24_1
  doi: 10.1038/s42254-019-0110-y
– ident: e_1_2_9_11_1
  doi: 10.1038/natrevmats.2017.31
– ident: e_1_2_9_17_1
  doi: 10.1093/nsr/nwac154
– ident: e_1_2_9_34_1
  doi: 10.1143/JPSJ.52.3919
– ident: e_1_2_9_41_1
  doi: 10.1002/9783527626359.ch1
– ident: e_1_2_9_16_1
  doi: 10.1002/adma.202211634
– ident: e_1_2_9_52_1
  doi: 10.1038/s41524-020-00416-1
– ident: e_1_2_9_50_1
  doi: 10.1038/s41524-021-00683-6
– ident: e_1_2_9_28_1
  doi: 10.1021/acs.nanolett.8b03315
– ident: e_1_2_9_8_1
  doi: 10.1038/nature02658
– ident: e_1_2_9_2_1
  doi: 10.1038/s41586-023-06279-y
– ident: e_1_2_9_40_1
  doi: 10.1038/nnano.2017.86
– ident: e_1_2_9_10_1
  doi: 10.1126/science.1145799
SSID ssj0009606
Score 2.4815588
Snippet The coupling between the spin degrees of freedom and macroscopic mechanical motions, including striction, shearing, and rotation, has attracted wide interest...
SourceID pubmedcentral
proquest
pubmed
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage e2420168
SubjectTerms 2D materials
Actuation
Antiferromagnetism
Coupling
Data processing
Domain walls
Hypothetical particles
magnetic properties
Magnetic structure
Magnetic transitions
Magnetostriction
NEMS
Particle theory
Resonant frequencies
Shearing
Spin dynamics
spintronics
Strain
Texture
Title Mechanical Resonant Sensing of Spin Texture Dynamics in a 2D Antiferromagnet
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.202420168
https://www.ncbi.nlm.nih.gov/pubmed/40304113
https://www.proquest.com/docview/3232719576
https://www.proquest.com/docview/3197651473
https://pubmed.ncbi.nlm.nih.gov/PMC12288789
Volume 37
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB4VTuVAoaUlBVauhNRTdmPHefi4YkEIdauqLBK3yK8AQmTRPi799Z1JdsMuHJDgmNhWbI_H8zkz8xngOPelFrzUoctyHcokFqG2CQ-dUcYioDWppQTn4e_0_EpeXCfXK1n8DT9E-8ONNKPer0nBtZn2nkhDtat5g9DEIGqhbF8K2CJU9PeJP4rgeU22FyehSmW-ZG2MRG-9-bpVegE1X0ZMriLZ2hSdfQK9HEQTgXLfnc9M1_57xu_4nlHuwPYCp7J-s7B24YOvPsPWCnvhF_g19JQ2TFJm5AWgkBp2SQHx1Q0bl-zy8a5iI9z85xPPBs3N91OG7zQTA9anKCU_mYwf9E3lZ3twdXY6OjkPF5czhBaNeh6mTqkSsUipSsu1zRU-o2g1-RWFRxBquHQucir2XqTCIbDwsZKJjmSZkfP0K2xW48rvA6MzqfJSG66cNLFVkeQ2c07aUngZ-QB-LoVTPDYcHEXDtiwKmp-inZ8ADpeyKxa6OC1i7FDGFR6sAvjRFqMWkWtEV348xzocYRlixywO4Fsj6vZTkrzHnGNJvrYI2grE0L1eUt3d1kzdXAjcxHMVgKiF_Er3i_5g2G-fvr-l0QF8FHRDcR1QfAibs8ncHyFsmpkObAj5p1MryH834Q_f
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BOUAPvGkDBYyExClt7DgPH1dsqwV2e6BbiVvk2E5ZVfVW290D_HpmnE3apQekcnRsK7bH4_nsGX8G-Fi6Rgve6NgWpY5llopYm4zHtla1QUBb54YuOE-O89Gp_Poj66IJ6S5Myw_RH7iRZoT1mhScDqQPrllDtQ3EQWhjELaU9-EBPesddlXfrxmkCKAHur00i1Uuy463MREHm_U37dItsHk7ZvImlg3G6OgJ1F032hiU8_3Vst43v_9iePyvfj6Fx2uoygbt3HoG95x_Dts3CAxfwHji6OYwCZqRI4CiatgJxcT7MzZv2MnlzLMprv-rhWPDX15fzMwVw2-aiSEbUKCSWyzmF_rMu-VLOD06nH4exev3GWKDdr2Mc6tUg3CkUY3h2pQK0yhdTa5F4RCH1lxam1iVOidyYRFbuFTJTCeyKch_-gq2_Ny7XWC0LVVO6porK-vUqERyU1grTSOcTFwEnzrpVJctDUfVEi6Lisan6scngr1OeNVaHa-qFBtUcIV7qwg-9NmoSOQd0d7NV1iGIzJD-FikEey0su5_JcmBzDnmlBuzoC9AJN2bOX72M5B1cyFwHS9VBCJI-R_NrwbDyaBPvb5LpffwcDSdjKvxl-Nvb-CRoAeLQ3zxHmwtFyv3FlHUsn4X9OQPxsATIw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fb9MwED7BkBA8MH4TGGAkJJ6yxY6T2I_VsmrAOiG2SXuLHNsZFZpbde0D_PXcJW3WsodJ8OjYVmyfz_fZd_4M8FH5xgjemNgVysQyS0VsbMZjV-vaIqCtc0sXnEfH-eGZ_HKena_d4u_4IfoDN9KMdr0mBZ-6Zu-aNNS4ljcITQyiFnUX7sk8UTSvy-_XBFKEz1u2vTSLdS7VirYxEXub9TfN0g2seTNkch3KtrZouA1m1YsuBOXn7mJe79rffxE8_k83H8OjJVBlg25mPYE7PjyFh2v0hc_gaOTp3jCJmZEbgGJq2AlFxIcLNmnYyXQc2Cmu_ouZZ-WvYC7H9orhN8NEyQYUpuRns8mluQh-_hzOhgen-4fx8nWG2KJVV3HutG4QjDS6sdxYpTGNsjXkWBQeUWjNpXOJ06n3IhcOkYVPtcxMIpuCvKcvYCtMgn8FjDal2ktTc-1knVqdSG4L56RthJeJj-DTSjjVtCPhqDq6ZVHR-FT9-ESws5JdtVTGqyrFBhVc484qgg99NqoR-UZM8JMFluGIyxA8FmkELztR97-S5D7mHHPUxiToCxBF92ZOGP9oqbq5ELiKKx2BaIV8S_OrQTka9KnX_1LpPdz_Vg6ro8_HX9_AA0GvFbfBxTuwNZ8t_FuEUPP6XaslfwCWWhHb
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mechanical+Resonant+Sensing+of+Spin+Texture+Dynamics+in+a+2D+Antiferromagnet&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Yousuf%2C+S+M+Enamul+Hoque&rft.au=Wang%2C+Yunong&rft.au=Ramachandran%2C+Shreyas&rft.au=Koptur%E2%80%90Palenchar%2C+John&rft.date=2025-07-01&rft.issn=0935-9648&rft.eissn=1521-4095&rft.volume=37&rft.issue=29&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fadma.202420168&rft.externalDBID=10.1002%252Fadma.202420168&rft.externalDocID=ADMA202420168
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon