Novel cathelicidins in horse leukocytes
Cathelicidins are precursors of defense peptides of the innate immunity and are widespread in mammals. Their structure comprises a conserved prepropiece and an antimicrobial domain that is structurally varied both intra- and inter-species. We investigated the complexity of the cathelicidin family in...
Saved in:
Published in | FEBS letters Vol. 457; no. 3; pp. 459 - 464 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
England
Elsevier B.V
03.09.1999
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Cathelicidins are precursors of defense peptides of the innate immunity and are widespread in mammals. Their structure comprises a conserved prepropiece and an antimicrobial domain that is structurally varied both intra- and inter-species. We investigated the complexity of the cathelicidin family in horse by a reverse transcription-PCR-based cloning strategy of myeloid mRNA and by Southern and Western analyses. Three novel cathelicidin sequences were deduced from bone marrow mRNA and designated equine cathelicidins eCATH-1, eCATH-2 and eCATH-3. Putative antimicrobial domains of 26, 27 and 40 residues with no significant sequence homology to other peptides were inferred at the C-terminus of the sequences. Southern analysis of genomic DNA using a probe based on the cathelicidin-conserved propiece revealed a polymorphic DNA region with several hybridization-positive fragments and suggested the presence of additional genes. A null eCATH-1 allele was also demonstrated with a frequency of 0.71 in the horse population analyzed and low amounts of eCATH-1-specific mRNA were found in myeloid cells of gene-positive animals. A Western analysis using antibodies to synthetic eCATH peptides revealed the presence of eCATH-2 and eCATH-3 propeptides, but not of eCATH-1-related polypeptides, in horse neutrophil granules and in the secretions of phorbol myristate acetate-stimulated neutrophils. These results thus suggest that eCATH-2 and eCATH-3 are functional genes, whereas eCATH-1 is unable to encode a polypeptide. |
---|---|
ISSN: | 0014-5793 1873-3468 |
DOI: | 10.1016/S0014-5793(99)01097-2 |