Three‐Dimensional Shear Wave Elastography for Differentiating Benign From Malignant Thyroid Nodules

Objectives To prospectively evaluate the diagnostic performance of 3‐dimensional (3D) shear wave elastography (SWE) for assessing thyroid nodules. Methods A total of 176 surgically or cytologically confirmed thyroid nodules (63 malignant and 113 benign) in 176 patients who had undergone conventional...

Full description

Saved in:
Bibliographic Details
Published inJournal of ultrasound in medicine Vol. 37; no. 7; pp. 1777 - 1788
Main Authors Zhao, Chong‐Ke, Chen, Shi‐Gao, Alizad, Azra, He, Ya‐Ping, Wang, Qiao, Wang, Dan, Yue, Wen‐Wen, Zhang, Kun, Qu, Shen, Wei, Qing, Xu, Hui‐Xiong
Format Journal Article
LanguageEnglish
Published England 01.07.2018
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Objectives To prospectively evaluate the diagnostic performance of 3‐dimensional (3D) shear wave elastography (SWE) for assessing thyroid nodules. Methods A total of 176 surgically or cytologically confirmed thyroid nodules (63 malignant and 113 benign) in 176 patients who had undergone conventional ultrasound (US), 2‐dimensional (2D) SWE, and 3D SWE examinations were included in this study. Quantitative elasticity values (mean elasticity, maximum elasticity, and standard deviation of elasticity of a large region of interest and mean elasticity of a 2‐mm region of interest) were measured on 2D and 3D SWE. Diagnostic performances of conventional US, 2D SWE, and 3D SWE were assessed. The role of 2D and 3D SWE in reducing unnecessary fine‐needle aspiration (FNA) for nodules with low suspicion was also evaluated. Results The diagnostic performances in terms of the area under the receiver operating characteristic curve were 0.612 for conventional US, 0.836 for 2D SWE (P < .001 in comparison with conventional US), and 0.839 for 3D SWE (P < .001 in comparison with conventional US). The mean elasticity achieved the highest diagnostic performance in 2D SWE, whereas the standard deviation of elasticity achieved the highest performance in 3D SWE, although no significant difference was found between them (P > .05). Three‐dimensional SWE increased the specificity in comparison with 2D SWE (88.5% versus 82.3%; P = .039). For the 37 nodules with low suspicion on conventional US imaging, 2D SWE was able to avoid unnecessary FNA in 77.1% (27 of 35) of benign nodules, and 3D SWE further increased the number to 88.6% (31 of 35). Conclusions Three‐dimensional SWE is a useful tool for predicting thyroid nodule malignancy and reducing unnecessary FNA procedures in thyroid nodules with low suspicion of malignancy.
Bibliography:This work was supported in part by the National Natural Science Foundation of China (grants 81601502, 81472501, and 81401417), the Shanghai Hospital Development Center (grants SHDC22015005 and SHDC12014229), and the Science and Technology Commission of Shanghai Municipality (grants 16411971100, 15411969000, and 14441900900).
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0278-4297
1550-9613
DOI:10.1002/jum.14531