Automatic Seizure Detection and Prediction Based on Brain Connectivity Features and a CNNs Meet Transformers Classifier

(1) Background: Epilepsy is a neurological disorder that causes repeated seizures. Since electroencephalogram (EEG) patterns differ in different states (inter-ictal, pre-ictal, and ictal), a seizure can be detected and predicted by extracting various features. However, the brain connectivity network...

Full description

Saved in:
Bibliographic Details
Published inBrain sciences Vol. 13; no. 5; p. 820
Main Authors Tian, Ziwei, Hu, Bingliang, Si, Yang, Wang, Quan
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 18.05.2023
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:(1) Background: Epilepsy is a neurological disorder that causes repeated seizures. Since electroencephalogram (EEG) patterns differ in different states (inter-ictal, pre-ictal, and ictal), a seizure can be detected and predicted by extracting various features. However, the brain connectivity network, a two-dimensional feature, is rarely studied. We aim to investigate its effectiveness for seizure detection and prediction. (2) Methods: Two time-window lengths, five frequency bands, and five connectivity measures were used to extract image-like features, which were fed into a support vector machine for the subject-specific model (SSM) and a convolutional neural networks meet transformers (CMT) classifier for the subject-independent model (SIM) and cross-subject model (CSM). Finally, feature selection and efficiency analyses were conducted. (3) Results: The classification results on the CHB-MIT dataset showed that a long window indicated better performance. The best detection accuracies of SSM, SIM, and CSM were 100.00, 99.98, and 99.27%, respectively. The highest prediction accuracies were 99.72, 99.38, and 86.17%, respectively. In addition, Pearson Correlation Coefficient and Phase Lock Value connectivity in the β and γ bands showed good performance and high efficiency. (4) Conclusions: The proposed brain connectivity features showed good reliability and practical value for automatic seizure detection and prediction, which expects to develop portable real-time monitoring equipment.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2076-3425
2076-3425
DOI:10.3390/brainsci13050820