Region-specific sensitivity of the spinal cord to ischemia/reperfusion: the dynamic of changes in catalytic NOS activity

This study was designed in order to consider whether the release of neuronally derived nitric oxide (NO) in the lumbosacral spinal cord during ischemia/reperfusion is region-specific and whether changes in Ca(2+)-dependent NO synthase (cNOS) activity paralell with functional outcome. The cNOS activi...

Full description

Saved in:
Bibliographic Details
Published inThe journal of physiological sciences Vol. 59; no. 2; pp. 97 - 103
Main Authors Kolesár, D, Kolesárová, M, Pavel, J, Dávidová, A, Marsala, J, Lukácová, N
Format Journal Article
LanguageEnglish
Published Japan Springer Japan 01.03.2009
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:This study was designed in order to consider whether the release of neuronally derived nitric oxide (NO) in the lumbosacral spinal cord during ischemia/reperfusion is region-specific and whether changes in Ca(2+)-dependent NO synthase (cNOS) activity paralell with functional outcome. The cNOS activity was measured in the spinal cord regions after 13-, 15- and 17-min ischemia alone and that followed by 24 h of reperfusion. In addition, the Tarlov's criteria were applied to define the neurological consequences of ischemia/reperfusion in experimental animals. Based on the results, it is evident that only the 17-min ischemia alone was quite sufficient to cause changes in cNOS activity, however, without alterations in functional outcomes. On the other hand, the ischemic episodes followed by reperfusion caused dynamic, region-specific alterations in cNOS activity and consequently led to deterioration of motor function of hindlimbs in affected animals. Our results indicate that the motoneurons in the ventral horns respond more sensitively to ischemia/reperfusion than do neurons localized in the other spinal cord regions and that changes in cNOS activity may also influence the axonal conductance in the white matter and account for the impairment of motoneuronal activity in affected animals.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1880-6546
1880-6562
DOI:10.1007/s12576-008-0013-7