An autonomous SRAM with on-chip sensors in an 80-nm double stacked cell technology

An active solution is proposed to overcome the uncertainty and fluctuation of the device parameters in nanotechnology SRAM. The proposed scheme is composed of sensing blocks, analysis blocks and control blocks. An on-chip timer, temperature sensor, substrate noise detector, and leakage current monit...

Full description

Saved in:
Bibliographic Details
Published inIEEE journal of solid-state circuits Vol. 41; no. 4; pp. 823 - 830
Main Authors Sohn, K., Hyun-Sun Mo, Young-Ho Suh, Hyun-Geun Byun, Hoi-Jun Yoo
Format Journal Article Conference Proceeding
LanguageEnglish
Published New York, NY IEEE 01.04.2006
Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:An active solution is proposed to overcome the uncertainty and fluctuation of the device parameters in nanotechnology SRAM. The proposed scheme is composed of sensing blocks, analysis blocks and control blocks. An on-chip timer, temperature sensor, substrate noise detector, and leakage current monitor are used to monitor internal status of chip during operation. From the sensed data, internal supply voltage, internal timing margin from decoding to sensing time, substrate noise from digital area, and low voltage level of wordline are controlled. A 512-kb test SRAM chip, fabricated with an 80-nm double stacked cell technology, shows that average power consumption is reduced by 9% and the standard deviation decreases by 58%.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:0018-9200
1558-173X
DOI:10.1109/JSSC.2006.870759