Birth-and-death evolution in primate MHC class I genes: divergence time estimates
The major histocompatibility complex (MHC) is a multigene family that mediates the host immune response by helping T lymphocytes to recognize and respond to foreign antigens. The high degree of polymorphism and a quick turnover of the genetic loci make the evolution of MHC genes an intriguing subjec...
Saved in:
Published in | Molecular biology and evolution Vol. 20; no. 4; pp. 601 - 609 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
United States
01.04.2003
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | The major histocompatibility complex (MHC) is a multigene family that mediates the host immune response by helping T lymphocytes to recognize and respond to foreign antigens. The high degree of polymorphism and a quick turnover of the genetic loci make the evolution of MHC genes an intriguing subject of study. To understand the evolutionary pattern of this multigene family, we studied the phylogeny and divergence times of six functional MHC class I loci from primate species. On the phylogenetic trees, locus F occupies the most basal position among these loci. Our results suggest that the F locus diverged from the other MHC class I loci about 46-66 MYA. The major diversification of the other class I loci was estimated to have occurred at about 35-49 MYA, which is before the time of separation of Old World-New World monkeys. The gene duplication leading to the classical C locus in great apes appears to have occurred about 21-28 MYA. At approximately the same time the duplication of the B locus occurred in macaques. The oldest allelic lineages of A, B, and C loci in humans seem to have appeared at least 14-19, 10-15, and 13-17 MYA, respectively. Our phylogenetic analysis supports the hypothesis that the nonclassical locus F has diverged from the rest of class I loci very early in primate evolution. The overall phylogenetic pattern observed among class I genes is consistent with the model of birth-and-death evolution. |
---|---|
Bibliography: | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 ObjectType-Article-1 ObjectType-Feature-2 |
ISSN: | 0737-4038 1537-1719 |
DOI: | 10.1093/molbev/msg064 |