Analysis of multiphase space vector pulse-width modulation based on multiple d-q spaces concept

Multiphase motors are usually designed to have the concentrated winding and nonsinusoidal airgap flux density distribution in order to maximize the torque per ampere. This means that the phase voltage of a multiphase motor has the nonsinusoidal waveform. Accordingly, the conventional analysis on a m...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on power electronics Vol. 20; no. 6; pp. 1364 - 1371
Main Authors Hyung-Min Ryu, Jang-Hwan Kim, Sul, Seung-Ki
Format Journal Article
LanguageEnglish
Published New York, NY IEEE 01.11.2005
Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Multiphase motors are usually designed to have the concentrated winding and nonsinusoidal airgap flux density distribution in order to maximize the torque per ampere. This means that the phase voltage of a multiphase motor has the nonsinusoidal waveform. Accordingly, the conventional analysis on a multiphase space vector pulse-width modulation (SVPWM), which is confined to a sinusoidal phase voltage, should be extended to a nonsinusoidal phase voltage. In this paper, based on a multiple d-q spaces concept a novel analysis on a multiphase SVPWM to synthesize an arbitrary nonsinusoidal phase voltage is proposed. Throughout this paper, a five-phase inverter is used as a practical example. The basic concepts can be easily extended to an n-phase inverter.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:0885-8993
1941-0107
DOI:10.1109/TPEL.2005.857551