Temperature-dependent magnetic properties of FePt: Effective spin Hamiltonian model

A model of magnetic interactions in the ordered ferromagnetic FePt is proposed on the basis of first-principles calculations of non-collinear magnetic configurations and shown to be capable of explaining recent measurements of magnetic-anisotropy energy (MAE). The site (Fe,Pt) resolved contributions...

Full description

Saved in:
Bibliographic Details
Published inEurophysics letters Vol. 69; no. 5; pp. 805 - 811
Main Authors Mryasov, O. N, Nowak, U, Guslienko, K. Y, Chantrell, R. W
Format Journal Article
LanguageEnglish
Published IOP Publishing 01.03.2005
Online AccessGet full text

Cover

Loading…
More Information
Summary:A model of magnetic interactions in the ordered ferromagnetic FePt is proposed on the basis of first-principles calculations of non-collinear magnetic configurations and shown to be capable of explaining recent measurements of magnetic-anisotropy energy (MAE). The site (Fe,Pt) resolved contributions to the MAE have been distinguished with small Fe easy-plane and large Pt easy-axis terms. This model has been tested against available experimental data on the temperature dependence of MAE showing scaling of uniaxial MAE (K1(T)) with magnetization (M(T)) K1(T) ~ M(T)gamma characterized by the unusual exponent of gamma = 2.1. It is shown that this unusual behavior of the FePt can be quantitatively explained within the proposed model and originates from an effective anisotropic exchange mediated by the induced Pt moment. The latter is expected to be a common feature of 3d-5d(4d) alloys having 5d/4d elements with large spin-orbit coupling and exchange-enhanced Stoner susceptibility.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:0295-5075
1286-4854
DOI:10.1209/epl/i2004-10404-2